In this paper, we derive the operational matrices of integration, derivative and production of Hermite wavelets and use a direct numerical method based on Hermite wavelet, for solving optimal control problems. The properties of Hermite polynomials are used for finding these matrices. First, we approximate the state and control variables by Hermite wavelets basis; then, the operational matrices is used to transfer the given problem into a linear system of algebraic equations. In fact, operational matrices of Hermite wavelet are employed to achieve a linear algebraic equation, in place of the dynamical system in terms of the unknown coefficients. The solution of this system gives us the solution of the original problem. Numerical examples with time varying and time invariant coefficient are given to demonstrate the applicability of these matrices.
Citation: |
Table 1. Comparison of the optimal values of J (Example 4.1)
Table 2. The exact and approximated values of x(t) and u(t) for Example 4.1
x(t) | u(t) | ||||
Time | Approximated solution via HW | Exact solution | Approximated solution via HW | Exact solution | |
0.0 | 1.0000 | 1.0000 | -0.3859 | -0.3858 | |
0.2 | 0.7594 | 0.7594 | -0.2769 | -0.2769 | |
0.4 | 0.5799 | 0.5799 | -0.1902 | -0.1902 | |
0.6 | 0.4472 | 0.4472 | -0.1189 | -0.1189 | |
0.8 | 0.3505 | 0.3505 | -0.0571 | -0.0571 | |
1 | 0.2820 | 0.2820 | 0.0000 | 0.0000 |
Table 3. Comparison of the optimal values of J (Example 4.2)
Table 4. The exact and approximated values of x(t) and u(t) for Example 4.2
x(t) | u(t) | ||||
Time | Approximated solution via HW | Exact solution | Approximated solution via HW | Exact solution | |
0.0 | 0.0000 | 0.0000 | 1.1028 | 1.1029 | |
0.2 | 0.2264 | 0.2265 | 1.4185 | 1.4188 | |
0.4 | 0.4896 | 04897 | 1.9646 | 1.9648 | |
0.6 | 0.8321 | 0.8324 | 2.8293 | 2.8293 | |
0.8 | 1.3097 | 1.3100 | 4.1515 | 4.1526 | |
1 | 2.0000 | 2.0000 | 6.1300 | 6.1493 |
Table 5. Comparison between different methods for optimal value of J (Example 4.3)
Table 6. The approximate and exact values of J (Example 4.4)
Exact value | Approximated value via HW | Error |
0.16666666666 | 0.1666666666 | 0.4×10−14 |
A. A. Abu Haya, Solving Optimal Control Problem Via Chebyshev Wavelet, Masters thesis, Islamic University of Gaza, 2011.
![]() |
|
A. Ali
, M. A. Iqbal
and S. T. Mohyud-Din
, Hermite wavelets method for boundary value problems, International Journal of Modern Applied Physics, 3 (2013)
, 38-47.
![]() |
|
E. Babolian
and F. Fattahzadeh
, Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration, Applied Mathematics and Computation, 188 (2007)
, 417-426.
doi: 10.1016/j.amc.2006.10.008.![]() ![]() ![]() |
|
T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, Academic Press, California, 1995.
![]() ![]() |
|
M. Behroozifar
and S. A. Yousefi
, Numerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials, Computational Methods for Differential Equations, 1 (2013)
, 78-95.
![]() |
|
C. F. Chen
and C. H. Hsiao
, Haar wavelet method for solving lumped and distributed-parameter systems, IEE Proceedings - Control Theory and Applications, 144 (1997)
, 87-94.
doi: 10.1049/ip-cta:19970702.![]() ![]() |
|
G. Elnagar
, State-control spectral Chebyshev parameterization for linearly constrained quadratic optimal control problems, Journal of Computational and Applied Mathematics, 79 (1997)
, 19-40.
doi: 10.1016/S0377-0427(96)00134-3.![]() ![]() ![]() |
|
M. Ghasemi
, E. Babolian
and M. Tavassoli Kajani
, Hybrid Fourier and block-pulse functions for applications in the calculus of variations, International Journal of Computer Mathematics, 83 (2006)
, 695-702.
doi: 10.1080/00207160601056016.![]() ![]() ![]() |
|
M. Ghasemi
and M. Tavassoli Kajani
, Numerical solution of time-varying delay systems by Chebyshev wavelets, Applied Mathematical Modelling, 35 (2011)
, 5235-5244.
doi: 10.1016/j.apm.2011.03.025.![]() ![]() ![]() |
|
J. S. Gu
and W. S. Jiang
, The Haar wavelets operational matrix of integration, International Journal of Systems Science, 27 (1996)
, 623-628.
doi: 10.1080/00207729608929258.![]() ![]() |
|
N. Haddadi
, Y. Ordokhani
and M. Razzaghi
, Optimal control of delay systems by using a hybrid functions approximation, Journal of Optimization Theory and Applications, 153 (2012)
, 338-356.
doi: 10.1007/s10957-011-9932-1.![]() ![]() ![]() |
|
H. Hashemi Mehne
and A. Hashemi Borzabadi
, A numerical method for solving optimal control problems using state parametrization, Numerical Algorithms, 42 (2006)
, 165-169.
doi: 10.1007/s11075-006-9035-5.![]() ![]() ![]() |
|
H. C. Hsieh
, Synthesis of adaptive control systems by function space methods, Advances in control systems, 2 (1965)
, 117-208.
doi: 10.1016/B978-1-4831-6712-1.50008-1.![]() ![]() ![]() |
|
C. Hwang
and Y. P. Shih
, Laguerre series direct method for variational problems, Journal of Optimization Theory and Applications, 39 (1983)
, 143-149.
doi: 10.1007/BF00934611.![]() ![]() ![]() |
|
C. Hwang
and Y. P. Shih
, Optimal control of delay systems via block pulse functions, Journal of Optimization Theory and Applications, 45 (1985)
, 101-112.
doi: 10.1007/BF00940816.![]() ![]() ![]() |
|
H. M. Jaddu, Numerical Methods for Solving Optimal Control Problems Using Chebyshev Polynomials, Ph. D thesis, School of Information Science, Japan Advanced Institute of Science and Technology, 1998.
![]() |
|
B. Kafash
, A. Delavarkhalafi
and S. M. Karbassi
, Application of variational iteration method for hamilton-jacobi-bellman equations, Applied Mathematical Modelling, 37 (2013)
, 3917-3928.
doi: 10.1016/j.apm.2012.08.013.![]() ![]() ![]() |
|
A. Majdalawi, An Iterative Technique for Solving Nonlinear Quadratic Optimal Control Problem Using Orthogonal Functions, Ph. D thesis, Alquds University, 2010.
![]() |
|
E. R. Pinch, Optimal Control and the Calculus of Variations, Oxford University Press, 1995.
![]() ![]() |
|
Z. Rafiei
, B. Kafash
and S. M. Karbassi
, A new approach based on using Chebyshev wavelets for solving various optimal control problems, Computational and Applied Mathematics, 36 (2017)
, 1-14.
doi: 10.1007/s40314-017-0419-z.![]() ![]() |
|
M. Razzaghi
, Solution of multi-delay systems via combined block-pulse functions and Legendre polynomials, Analele Stiintifice ale Universitatii Ovidius Constanta, 17 (2009)
, 223-232.
![]() ![]() |
|
M. Razzaghi
and S. Yousefi
, The Legendre wavelets operational matrix of integration, International Journal of Systems Science, 32 (2001)
, 495-502.
doi: 10.1080/00207720120227.![]() ![]() ![]() |
|
V. Rehbockt, K. L. Teo, L. S. Jenning and H. W. J. Lee, A survey of the control parametrization and control parametrization enhancing methods for constrained optimal control problem, in Progress in Optimization, Springer, Boston, (1999), 247-275.
doi: 10.1007/978-1-4613-3285-5_13.![]() ![]() ![]() |
|
H. Saberi Nik
, S. Effati
and M. Shirazian
, An approximate-analytical solution for the hamilton-jacobi-bellman equation via homotopy perturbation method, Mathematical and Computer Modelling, 36 (2012)
, 5614-5623.
doi: 10.1016/j.apm.2012.01.013.![]() ![]() ![]() |
|
H. R. Sharif
, M. A. Vali
, M. Samavat
and A. A. Gharavizi
, A new algorithm for optimal control of time-delay systems, Applied Mathematical Sciences, 5 (2011)
, 595-606.
![]() ![]() |
|
X. T. Wang
, Numerical solution of time-varying systems with a stretch by general Legendre wavelets, Applied Mathematics and Computation, 198 (2008)
, 613-620.
doi: 10.1016/j.amc.2007.08.058.![]() ![]() ![]() |
|
S. Yousefi
and M. Razzaghi
, Legendre wavelets method for the nonlinear volterra-fredholm integral equations, Mathematics and Computers in Simulation, 70 (2005)
, 1-8.
doi: 10.1016/j.matcom.2005.02.035.![]() ![]() ![]() |
Approximate (linestyle is -) and exact (linestyle is :) solution for x(t)
Approximate (linestyle is -) and exact (linestyle :) solution for u(t)
Approximate (linestyle -) and exact (linestyle :) solution for x(t)
Approximate (linestyle -) and exact (linestyle :) solution for u(t)