• Previous Article
    A Mehrotra type predictor-corrector interior-point algorithm for linear programming
  • NACO Home
  • This Issue
  • Next Article
    Integrated modeling and optimization of material flow and financial flow of supply chain network considering financial ratios
June  2019, 9(2): 133-145. doi: 10.3934/naco.2019010

Second order modified objective function method for twice differentiable vector optimization problems over cone constraints

a. 

Department of Applied Mathematics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India

b. 

Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Poland

* Corresponding author: Shalini Jha, Visiting Scientist, Machine Intelligence Unit (MIU), ​Indian Statistical Institute (ISI) Kolkata, India - 700108

Received  January 2017 Revised  August 2018 Published  January 2019

In the paper, a vector optimization problem with twice differentiable functions and cone constraints is considered. The second order modified objective function method is used for solving such a multiobjective programming problem. In this method, for the considered twice differentiable multi-criteria optimization problem, its associated second order vector optimization problem with the modified objective function is constructed at the given arbitrary feasible solution. Then, the equivalence between the sets of (weakly) efficient solutions in the original twice differentiable vector optimization problem with cone constraints and its associated modified vector optimization problem is established. Further, the relationship between an (weakly) efficient solution in the original vector optimization problem and a saddle-point of the second order Lagrange function defined for the modified vector optimization problem is also analyzed.

Citation: Anurag Jayswala, Tadeusz Antczakb, Shalini Jha. Second order modified objective function method for twice differentiable vector optimization problems over cone constraints. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 133-145. doi: 10.3934/naco.2019010
References:
[1]

B. Aghezzaf and M. Hachimi, Second-order optimality conditions in multiobjective optimization problems, J. Optim. Theory Appl., 102 (1999), 37-50.  doi: 10.1023/A:1021834210437.  Google Scholar

[2]

T. Antczak, A new approach to multiobjective programming with a modified objective function, J. Global Optim., 27 (2003), 485-495.  doi: 10.1023/A:1026080604790.  Google Scholar

[3]

T. Antczak, Saddle-point criteria and duality in multiobjective programming via an $\eta$-approximation method, Anziam J., 47 (2005), 155-172.  doi: 10.1017/S1446181100009962.  Google Scholar

[4]

T. Antczak, Saddle-point criteria via a second order $\eta$-approximation approach for nonlinear mathematical programming problem involving second order invex functions, Kybernetika, 47 (2011), 222-240.   Google Scholar

[5]

C. R. Bector and B. K. Bector, Generalized-bonvex functions and second order duality for a nonlinear programming problem, Congr. Numer., 52 (1985), 37-52.   Google Scholar

[6]

C. R. Bector and B. K. Bector, On various duality theorems for second order duality in nonlinear programming, Cahiers Centre Etudes Rech. Oper., 28 (1986), 283-292.   Google Scholar

[7]

J. W. ChenY. J. ChoJ. K. Kim and J. Li, Multiobjective optimization problems with modified objective functions and cone constraints and applications, J. Global Optim., 49 (2011), 137-147.  doi: 10.1007/s10898-010-9539-3.  Google Scholar

[8]

M. K. Ghosh and A. J. Shaiju, Existence of value and saddle-point in infinite-dimensional differential games, J. Optim. Theory Appl., 121 (2004), 301-325.  doi: 10.1023/B:JOTA.0000037407.15482.72.  Google Scholar

[9]

T. R. GulatiH. Saini and S. K. Gupta, Second-order multiobjective symmetric duality with cone constraints, European J. Oper. Res., 205 (2010), 247-252.  doi: 10.1016/j.ejor.2009.12.024.  Google Scholar

[10]

L. Li and J. Li, Equivalence and existence of weak Pareto optima for multiobjective optimization problems with cone constraints, Appl. Math. Lett., 21 (2008), 599-606.  doi: 10.1016/j.aml.2007.07.012.  Google Scholar

[11]

Z. F. Li and S. Y. Wang, Lagrange multipliers and saddle-points in multiobjective programming, J. Optim. Theory Appl., 83 (1994), 63-81.  doi: 10.1007/BF02191762.  Google Scholar

[12]

T. LiY. J. WangZ. Liang and P. M. Pardalos, Local saddle-point and a class of convexification methods for nonconvex optimization problems, J. Global Optim., 38 (2007), 405-419.  doi: 10.1007/s10898-006-9090-4.  Google Scholar

[13]

S. K. SunejaM. B. Grover and M. Kapoor, Second order multiobjective symmetric duality in vector optimization over cones involving $\rho $-invexity, Amer. J. Oper. Res., 4 (2014), 1-9.  doi: 10.1016/S0377-2217(01)00258-2.  Google Scholar

[14]

S. K. SunejaS. Sharma and M. Kapoor, Modified objective function method in nonsmooth vector optimization over cones, Optim. Lett., 8 (2014), 1361-1373.  doi: 10.1007/s11590-013-0661-2.  Google Scholar

[15]

S. K. Suneja, S. Sharma and Vani, Second order duality in vector optimization over cones, J. Appl. Math. Inform., 26 (2008), 251–261. Google Scholar

show all references

References:
[1]

B. Aghezzaf and M. Hachimi, Second-order optimality conditions in multiobjective optimization problems, J. Optim. Theory Appl., 102 (1999), 37-50.  doi: 10.1023/A:1021834210437.  Google Scholar

[2]

T. Antczak, A new approach to multiobjective programming with a modified objective function, J. Global Optim., 27 (2003), 485-495.  doi: 10.1023/A:1026080604790.  Google Scholar

[3]

T. Antczak, Saddle-point criteria and duality in multiobjective programming via an $\eta$-approximation method, Anziam J., 47 (2005), 155-172.  doi: 10.1017/S1446181100009962.  Google Scholar

[4]

T. Antczak, Saddle-point criteria via a second order $\eta$-approximation approach for nonlinear mathematical programming problem involving second order invex functions, Kybernetika, 47 (2011), 222-240.   Google Scholar

[5]

C. R. Bector and B. K. Bector, Generalized-bonvex functions and second order duality for a nonlinear programming problem, Congr. Numer., 52 (1985), 37-52.   Google Scholar

[6]

C. R. Bector and B. K. Bector, On various duality theorems for second order duality in nonlinear programming, Cahiers Centre Etudes Rech. Oper., 28 (1986), 283-292.   Google Scholar

[7]

J. W. ChenY. J. ChoJ. K. Kim and J. Li, Multiobjective optimization problems with modified objective functions and cone constraints and applications, J. Global Optim., 49 (2011), 137-147.  doi: 10.1007/s10898-010-9539-3.  Google Scholar

[8]

M. K. Ghosh and A. J. Shaiju, Existence of value and saddle-point in infinite-dimensional differential games, J. Optim. Theory Appl., 121 (2004), 301-325.  doi: 10.1023/B:JOTA.0000037407.15482.72.  Google Scholar

[9]

T. R. GulatiH. Saini and S. K. Gupta, Second-order multiobjective symmetric duality with cone constraints, European J. Oper. Res., 205 (2010), 247-252.  doi: 10.1016/j.ejor.2009.12.024.  Google Scholar

[10]

L. Li and J. Li, Equivalence and existence of weak Pareto optima for multiobjective optimization problems with cone constraints, Appl. Math. Lett., 21 (2008), 599-606.  doi: 10.1016/j.aml.2007.07.012.  Google Scholar

[11]

Z. F. Li and S. Y. Wang, Lagrange multipliers and saddle-points in multiobjective programming, J. Optim. Theory Appl., 83 (1994), 63-81.  doi: 10.1007/BF02191762.  Google Scholar

[12]

T. LiY. J. WangZ. Liang and P. M. Pardalos, Local saddle-point and a class of convexification methods for nonconvex optimization problems, J. Global Optim., 38 (2007), 405-419.  doi: 10.1007/s10898-006-9090-4.  Google Scholar

[13]

S. K. SunejaM. B. Grover and M. Kapoor, Second order multiobjective symmetric duality in vector optimization over cones involving $\rho $-invexity, Amer. J. Oper. Res., 4 (2014), 1-9.  doi: 10.1016/S0377-2217(01)00258-2.  Google Scholar

[14]

S. K. SunejaS. Sharma and M. Kapoor, Modified objective function method in nonsmooth vector optimization over cones, Optim. Lett., 8 (2014), 1361-1373.  doi: 10.1007/s11590-013-0661-2.  Google Scholar

[15]

S. K. Suneja, S. Sharma and Vani, Second order duality in vector optimization over cones, J. Appl. Math. Inform., 26 (2008), 251–261. Google Scholar

[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[3]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[4]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[5]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[6]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[7]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[8]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[9]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[10]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[11]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[12]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[13]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[14]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[15]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[16]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[17]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[18]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[19]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[20]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

 Impact Factor: 

Metrics

  • PDF downloads (155)
  • HTML views (472)
  • Cited by (0)

Other articles
by authors

[Back to Top]