[1]
|
R. Almeida, F. Bastos and A. Teixeira, On polynomiality of a predictor-corrector variant algorithm, in International conference on numerical analysis and applied mathematica, Springer-Verlag, New York, (2010), 959–963.
|
[2]
|
R. Almeida and A. Teixeira, On the convergence of a predictor-corrector variant algorithm, TOP, 23 (2015), 401-418.
doi: 10.1007/s11750-014-0346-8.
|
[3]
|
E. D. Andersen and K. D. Andersen, The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm, in High Performance Optimization (eds. H. Frenk, K. Roos, T. Terlaky and S. Zhang), Kluwer Academic Publishers, (2000), 197–232.
doi: 10.1007/978-1-4757-3216-0_8.
|
[4]
|
S. Asadi, H. Mansouri, Zs. Darvay and M. Zangiabadi, On the $P_*(\kappa)$ horizontal linear complementarity problems over Cartesian product of symmetric cones, Optim. Methods Softw., 31 (2016), 233-257.
doi: 10.1080/10556788.2015.1058795.
|
[5]
|
S. Asadi, H. Mansouri, Zs. Darvay, G. Lesaja and M. Zangiabadi, A long-step feasible predictor-corrector interior-point algorithm for symmetric cone optimization, Optim. Methods Softw., 67 (2018), 2031–2060
doi: 10.1080/10556788.2018.1528248.
|
[6]
|
S. Asadi, H. Mansouri, G. Lesaja and M. Zangiabadi, A long-step interior-point algorithm for symmetric cone Cartesian $P_*(\kappa)$ -HLCP, Optimization, 67 (2018), 2031-2060.
doi: 10.1080/02331934.2018.1512604.
|
[7]
|
S. Asadi, H. Mansouri, Zs. Darvay, M. Zangiabadi and N Mahdavi-Amiri, Large-neighborhood infeasible predictor-corrector algorithm for horizontal linear complementarity problems over cartesian product of symmetric cones, J. Optim. Theory Appl., q
doi: 10.1007/s10957-018-1402-6.
|
[8]
|
S. Asadi, H. Mansouri and and Zs. Darvay, An infeasible full-NT step IPM for $P_*(\kappa)$ horizontal linear complementarity problem over Cartesian product of symmetric cones, Optimization, 66 (2017), 225-250.
doi: 10.1080/02331934.2016.1267732.
|
[9]
|
J. Czyzyk, S. Mehrtotra, M. Wagner and S. J. Wright, PCx: an interior-point code for linear programming, Optim. Methods Softw., 11/12 (1999), 397-430.
doi: 10.1080/10556789908805757.
|
[10]
|
J. Ji, F. Potra and R. Sheng, On a local convergence of a predictor-corrector method for semidefinite programming, SIAM J. Optim., 10 (1999), 195-210.
doi: 10.1137/S1052623497316828.
|
[11]
|
N. K. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4 (1984), 373-395.
doi: 10.1007/BF02579150.
|
[12]
|
M. Kojima, N. Megiddo, T. Noma and A. Yoshise, A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, Springer, Berlin, 1991.
doi: 10.1007/3-540-54509-3.
|
[13]
|
M. Kojima, N. Megiddo and S. Mizuno, A primal-dual infeasible-interior-point algorithm for linear programming, Math. Program., 61 (1993), 263-280.
doi: 10.1007/BF01582151.
|
[14]
|
S. Mehrotra, On finding a vertex solution using interior-point methods, Linear Algebra Appl., 152 (1991), 233-253.
doi: 10.1016/0024-3795(91)90277-4.
|
[15]
|
S. Mehrotra, On the implementation of a primal-dual interior point method, SIAM J. Optim., 2 (1992), 575-601.
doi: 10.1137/0802028.
|
[16]
|
N. Megiddo, Pathways to the optimal set in linear programming, in Progress in Mathematical Programming, (1989), 135–158.
|
[17]
|
S. Mizuno, M. J. Todd and Y. Ye, On adaptive-step primal-dual interior-point algorithms for linear programming, Math. Oper. Res., 18 (1993), 964-981.
doi: 10.1287/moor.18.4.964.
|
[18]
|
R. D. C. Monteiro, Primal-dual path-following algorithm for semidefinite programming, SIAM J. Optim., 7 (1997), 663-678.
doi: 10.1137/S1052623495293056.
|
[19]
|
J. Peng, C. Roos and T. Terlaky, Self-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms. Princeton University Press, Princeton, New Jersey, 2002.
|
[20]
|
M. Salahi, J. Peng and T. Terlaky, On mehrotra-type predictor-corrector algorithms, SIAM J. Optim., 18 (2007), 1377-1397.
doi: 10.1137/050628787.
|
[21]
|
M. Salahi, A finite termination mehrotra type predictor-corrector algorithm, Appl. Math. Comput., 190 (2007), 1740-1746.
doi: 10.1016/j.amc.2007.02.061.
|
[22]
|
Gy. Sonnevend, An analytic center for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming, in Lecture Notes in Control and Information Sciences, Springer, Berlin, (1985), 866–876.
doi: 10.1007/BFb0043914.
|
[23]
|
J. Stoer and M. Wechs, Infeasible-interior-point paths for sufficient linear complementarity problems and their analyticity, Math. Program. Ser. A., 83 (1998), 407-423.
doi: 10.1016/S0025-5610(98)00011-2.
|
[24]
|
G. Q. Wang and Y. Q. Bai, Polynomial interior-point algorithms for $P_*(\kappa)$ horizontal linear complementarity problem, J. Comput. Appl. Math., 233 (2009), 248-263.
doi: 10.1016/j.cam.2009.07.014.
|
[25]
|
G. Q. Wang and G. Lesaja, Full Nesterov-Todd step feasible interior-point method for the Cartesian $P_*(\kappa)$-SCLCP, Optim. Methods Softw., 28 (2013), 600-618.
doi: 10.1080/10556788.2013.781600.
|
[26]
|
Y. Zhang and D. Zhang, Superlinear convergence of infeasible-interior-point methods for linear programming, Math. Program., 66 (1994), 361-377.
doi: 10.1007/BF01581155.
|
[27]
|
Y. Zhang, On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem, SIAM J. Optim., 4 (1994), 208-227.
doi: 10.1137/0804012.
|
[28]
|
Y. Zhang, Solving large scale linear programmes by interior point methods under the Matlab environment, Optim. Methods Softw., 10 (1999), 1-31.
doi: 10.1080/10556789808805699.
|