\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Iterative methods for solving large sparse Lyapunov equations and application to model reduction of index 1 differential-algebraic-equations

  • Corresponding author: M. Monir Uddin (E-mail: monir.uddin@northsouth.edu)

    Corresponding author: M. Monir Uddin (E-mail: monir.uddin@northsouth.edu)
Abstract / Introduction Full Text(HTML) Figure(4) / Table(3) Related Papers Cited by
  • To implement the balancing based model reduction of large-scale dynamical systems we need to compute the low-rank (controllability and observability) Gramian factors by solving Lyapunov equations. In recent time, Rational Krylov Subspace Method (RKSM) is considered as one of the efficient methods for solving the Lyapunov equations of large-scale sparse dynamical systems. The method is well established for solving the Lyapunov equations of the standard or generalized state space systems. In this paper, we develop algorithms for solving the Lyapunov equations for large-sparse structured descriptor system of index-1. The resulting algorithm is applied for the balancing based model reduction of large sparse power system model. Numerical results are presented to show the efficiency and capability of the proposed algorithm.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Convergence histories of both Gramians by RKSM for mod-2

    Figure 2.  Comparison between full system and reduced-order system in frequency domain

    Figure 3.  Comparison between original system and reduced model in time domain

    Figure 4.  Largest Hankel singular values of original system and 86 dimensional reduced-order system

    Table 1.  Number of differential & algebraic variables and largest eigenvalue of $ (-A, E) $ for different models.

    Modeldifferentialalgebraiceigs$ (-A, E) $inputs/outputs
    Mod-16066 529107274/4
    Mod-21 1428 593107274/4
    Mod-33 07818 050106694/4
     | Show Table
    DownLoad: CSV

    Table 2.  Comparisons between full systems and their reduced models

    ModelDimensionError
    fullreducedabsoluterelative
    Mod-1$ 7\, 135 $ $ 87 $ $ 3.1\times 10^{-3} $ $ 1.5 \times 10^{-4} $
    Mod-2$ 9\, 735 $ $ 86 $ $ 5.3 \times 10^{-2} $$ 4.7 \times 10^{-4} $
    Mod-3$ 21\, 128 $ $ 77 $$ 5.6 \times 10^{-1} $$ 4.3 \times 10^{-2} $
     | Show Table
    DownLoad: CSV

    Table 3.  Balanced truncation tolerances and dimensions of reduced-order model.

    Modeltolerancedimension of ROM
    $ 10^{-4} $118
    $ 10^{-3} $104
    Mod-2 $ 10^{-2} $86
    $ 10^{-1} $70
     | Show Table
    DownLoad: CSV
  • [1] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM Publications, Philadelphia, PA, 2005. doi: 10.1137/1.9780898718713.
    [2] R. Bartels and G. Stewart, Solution of the matrix equation AX+XB = C: Algorithm 432, Comm. ACM, 15 (1972), 820-826. 
    [3] U. Baur, Control Oriented Model Reduction for Parabolic Systems, Ph.D thesis, Inst. f. Mathematik, Technische Universität Berlin, Berlin, 2008.
    [4] P. BennerP. Kürschner and J. Saak, Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations, Elect. Trans. Numer. Anal., 43 (2014), 142-162. 
    [5] P. BennerJ. R. Li and T. Penzl, Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems, Numer. Lin. Alg. Appl., 15 (2008), 755-777.  doi: 10.1002/nla.622.
    [6] P. Benner, E. Quintana-Ortí and G. Quintana-Ortí, A portable subroutine library for solving linear control problems on distributed memory computers, in Workshop on wide area networks and high performance computing, Lecture Notes in Control and Information, Springer-Verlag, Berlin/Heidelberg, Germany, (1999), 61–87. doi: 10.1007/BFb0110079.
    [7] P. BennerE. Quintana-Ortí and G. Quintana-Ortí, Balanced truncation model reduction of large-scale dense systems on parallel computers, Math. Comput. Model. Dyn. Syst., 6 (2000), 383-405. 
    [8] P. BennerJ. Saak and M. M. Uddin, Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control, Numer. Alg. Cont. Opt., 6 (2016), 1-20.  doi: 10.3934/naco.2016.6.1.
    [9] T. A. Davis, Direct Methods for Sparse Linear Systems, SIAM Publications, Philadelphia, PA, 2006. doi: 10.1137/1.9780898718881.
    [10] V. Druskin and L. Knizhnerman, Extended Krylov subspaces: Approximation of the matrix square root and related functions, SIAM J. Matrix Anal. Appl., 19 (1998), 755-771.  doi: 10.1137/S0895479895292400.
    [11] V. Druskin and V. Simoncini, Adaptive rational Krylov subspaces for large-scale dynamical systems, Systems & Control Letters, 60 (2011), 546–560. doi: 10.1016/j.sysconle.2011.04.013.
    [12] F. FreitasJ. Rommes and N. Martins, Gramian-based reduction method applied to large sparse power system descriptor models, IEEE Transactions on Power Systems, 23 (2008), 1258-1270. 
    [13] R. W. Freund, Structure-preserving model order reduction of RCL circuit equations, in Model Order Reduction: Theory, Research Aspects and Applications, Springer-Verlag, (2008), 49–73. doi: 10.1007/978-3-540-78841-6_3.
    [14] K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their L-error norms, Inter. J. Cont., 39 (1984), 1115-1193.  doi: 10.1080/00207178408933239.
    [15] M. Green and D. J. N. Limebeer, Linear Robust Control, Prentice Hall, Englewood Cliffs, 1995.
    [16] S. GugercinD. Sorensen and A. Antoulas, A modified low-rank Smith method for large-scale Lyapunov equations, Numer. Alg., 32 (2003), 27-55.  doi: 10.1023/A:1022205420182.
    [17] I. Jaimoukha and E. Kasenally, Krylov subspace methods for solving large Lyapunov equations, SIAM J. Numer. Anal., 31 (1994), 227-251.  doi: 10.1137/0731012.
    [18] K. Jbilou, ADI preconditioned Krylov methods for large Lyapunov matrix equations, Lin. Alg. Appl., 432 (2010), 2473-2485.  doi: 10.1016/j.laa.2009.12.025.
    [19] K. Jbilou and A.J. Riquet, Projection methods for large Lyapunov matrix equations, Lin. Alg. Appl., 415 (2006), 344-358.  doi: 10.1016/j.laa.2004.11.004.
    [20] P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution, Textbooks in Mathematics, EMS Publishing House, Zürich, Switzerland, 2006. doi: 10.4171/017.
    [21] J. R. Li, Model Reduction of Large Linear Systems via Low Rank System Gramians, Ph.D thesis, Massachusetts Institute of Technology, 2000.
    [22] J. R. Li and J. White, Low rank solution of Lyapunov equations, SIAM J. Matrix Anal. Appl., 24 (2002), 260-280.  doi: 10.1137/S0895479801384937.
    [23] A. Lu and E. Wachspress, Solution of Lyapunov equations by alternating direction implicit iteration, Comput. Math. Appl., 21 (1991), 43-58.  doi: 10.1016/0898-1221(91)90124-M.
    [24] T. Penzl, A cyclic low rank Smith method for large sparse Lyapunov equations, SIAM J. Sci. Comput., 21 (2000), 1401-1418.  doi: 10.1137/S1064827598347666.
    [25] A. Ruhe, The rational Krylov algorithm for nonsymmetric eigenvalue problems. Ⅲ: Complex shifts for real matrices, BIT Numerical Mathematics, 34 (1994), 165-176.  doi: 10.1007/BF01935024.
    [26] Y. Saad, Numerical solution of large Lyapunov equation, in Signal Processing, Scattering, Operator Theory and Numerical Methods (Amsterdam, 1989), of Prog. Syst. Cont. Theory, Birkhäuser, Bostan, MA, (1990), 503–511.
    [27] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA, USA, 2003. doi: 10.1137/1.9780898718003.
    [28] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations, SIAM J. Sci. Comput., 29 (2007), 1268-1288.  doi: 10.1137/06066120X.
    [29] E. D. Sontag, Mathematical Control Theory, Springer, New York, 1998. doi: 10.1007/978-1-4612-0577-7.
    [30] M. M. Uddin, Model reduction for piezo-mechanical systems using Balanced Truncation, Master's thesis, Stockholm University, Stockholm, Sweden, 2011, Available from: http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-78227.
    [31] M. M. UddinJ. SaakB. Kranz and P. Benner, Computation of a compact state space model for an adaptive spindle head configuration with piezo actuators using balanced truncation, Springer-Verlag, Production Engineering, 6 (2012), 577-586.  doi: 10.1007/s11740-012-0410-x.
    [32] M. M. Uddin, S. Hossain and F. Uddin, Rational Krylov subspace method (RKSM) for solving the Lyapunov equations of index-1 descriptor systems and application to balancing based model reduction, 9th International Conference on Electrical and Computer Engineering (ICECE) 2016, (2016), 451–454. doi: 10.1155/2017/4362641.
  • 加载中

Figures(4)

Tables(3)

SHARE

Article Metrics

HTML views(3100) PDF downloads(347) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return