[1]
|
J. D. Blanchard, J. Tanner and K. Wei, CGIHT: Conjugate gradient iterative hard thresholding for compressed sensing and matrix completion, Information and Inference: A Journal of the IMA, 4 (2014), 289-327.
doi: 10.1093/imaiai/iav011.
|
[2]
|
T. Blumensath and M. E. Davies, Iterative thresholding for sparse approximations, Journal of Constructive Approximation, 14 (2008), 629-654.
doi: 10.1007/s00041-008-9035-z.
|
[3]
|
T. Blumensath and M. E. Davies, Normalised itertive hard thresholding: guaranteed stability and performance, IEEE Journal of Selected Topics in Signal Processing, 4 (2010), 298-309.
|
[4]
|
E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Foundations of Computational Mathematics, 9 (2009), 717-772.
doi: 10.1007/s10208-009-9045-5.
|
[5]
|
E. J. Candès and T. Tao, The power of convex relaxation: Near-optimal matrix completion, IEEE Transactions on Information Theory, 56 (2009), 2053-1080.
doi: 10.1109/TIT.2010.2044061.
|
[6]
|
M. Fazel, H. Hindi and S. Boyd, Rank minimization and applications in system theory, Proceedings of the American Control Conference, 4 (2004), 3273-3278.
|
[7]
|
M. Fazel, T. K. Pong, D. Sun and P. Tseng, Hankel matrix rank minimization with applications to system identification and realization, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 946-977.
doi: 10.1137/110853996.
|
[8]
|
D. Goldfarb and S. Ma, Convergence of fixed-point continuation algorithms for matrix rank minimization, Foundations of Computational Mathematics, 11 (2011), 183-210.
doi: 10.1007/s10208-011-9084-6.
|
[9]
|
J. P. Haldar and D. Hernando, Rank-constrained solutions to linear matrix equations using powerfactorization, IEEE Signal Processing Letters, 16 (2009), 584-587.
|
[10]
|
N. J. A. Harvey, D. R. Karger and S. Yekhanin, The complexity of matrix completion, Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm, (2006), 1103–1111.
doi: 10.1145/1109557.1109679.
|
[11]
|
A. Kyrillidis and V. Cevher, Martix ALPS: Accelerated low rank and sparse matrix reconstruction, Technical Report, 2012.
|
[12]
|
A. Kyrillidis and V. Cevher, Martix recips for hard thresholding methods, Journal of Mathematical Imaging and Vision, 48 (2014), 235-265.
doi: 10.1007/s10851-013-0434-7.
|
[13]
|
Y. Liu, J. Tao, H. Zhang, X. Xiu and L. Kong, Fused LASSO penalized least absolute deviation estimator for high dimensional linear regression, Numerical Algebra, Control & Optimization, 8 (2018), 97–117.
doi: 10.3934/naco.2018006.
|
[14]
|
Z. Liu and L. Vandenberghe, Interior-point method for nuclear norm approximation with application to system identification, SIAM Journal on Matrix Analysis and Applications, 31 (2009), 1235-1256.
doi: 10.1137/090755436.
|
[15]
|
C. Lu, J. Tang, S. Yan and Z. Lin, Generalized nonconvex nonsmooth low-rank minimization, IEEE Conference on Computer Vision and Pattern Recognition, 2014.
|
[16]
|
Z. Lu, Iterative hard thresholding methods for $l_0$ regularized convex cone programming, Mathematical Programming, 147 (2014), 125-154.
doi: 10.1007/s10107-013-0714-4.
|
[17]
|
Z. Lu and Y. Zhang, Penalty decomposition methods for rank minimization, Optimization Methods and Software, 30 (2015), 531-558.
doi: 10.1080/10556788.2014.936438.
|
[18]
|
S. Ma, D. Goldfarb and L. Chen, Fixed point and bregman iterative methods for matrix rank minimization, Mathematical Programming, 128 (2011), 321-353.
doi: 10.1007/s10107-009-0306-5.
|
[19]
|
K. Mohan and M. Fazel, Reweighted nuclear norm minimization with application to system identification, Proceedings of the American Control Conference, 2010.
|
[20]
|
K. Mohan and M. Fazel, Iterative reweighted algorithms for matrix rank minimization, Journal of Machine Learning Research, 13 (2012), 3441-3473.
|
[21]
|
B. Recht, M. Fazel and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Review, 52 (2010), 471-501.
doi: 10.1137/070697835.
|
[22]
|
J. Tanner and K. Wei, Normalized iterative hard thresholding for matrix completion, SIAM Journal on Scientific Computing, 35 (2013), S104–S125.
doi: 10.1137/120876459.
|
[23]
|
Z. Wen, W. Yin and Y. Zhang, Solving a low-rank factorization model for matrix completion by a non-linear successive over-relaxation algorithm, Mathematical Programming Computation, 4 (2012), 333-361.
doi: 10.1007/s12532-012-0044-1.
|
[24]
|
Z. Weng and X. Wang, Low-rank matrix completion for array signal processing, IEEE International Conference on Speech and Signal Processing, (2012), 2697–2700.
|