\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Indirect methods for fuel-minimal rendezvous with a large population of temporarily captured orbiters

  • * Corresponding author: Monique Chyba

    * Corresponding author: Monique Chyba 

This research is partially supported by the National Science Foundation (NSF) Division of Mathematical Sciences, award DMS-1109937, NSF Division of of Graduate Education, award DGE-0841223 and by the NASA, proposal Institute for the Science of Exploration Targets from the program Solar System Exploration Research Virtual Institute.

Abstract / Introduction Full Text(HTML) Figure(34) / Table(4) Related Papers Cited by
  • A main objective of this work is to assess the feasibility of space missions to a new population of near Earth asteroids which temporarily orbit Earth, called temporarily captured orbiter. We design rendezvous missions to a large random sample from a database of over 16,000 simulated temporarily captured orbiters using an indirect method based on the maximum principle. The main contribution of this paper is the development of techniques to overcome the difficulty in initializing the algorithm with the construction of the so-called cloud of extremals.

    Mathematics Subject Classification: Primary: 49J15, 93C95; Secondary: 70Q05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Simulated TCOs orbits from the database calculated in [11], plotted in the inertial Earth-Moon (EM)-barycentric reference frame

    Figure 2.  The distribution of TCOs capture times less than 3 years

    Figure 3.  Distributions of the periapsis distances for all 16,923 temporarily captured orbiter, with respect to the Earth (perigee), Moon (perilune), $ L_1 $ (peri-$ L_1 $), and $ L_2 $ (peri-$ L_2 $)

    Figure 4.  Fixed control structure

    Figure 5.  $ \Delta v $ (m/s) vs. total thrusting time $ \tau $ (hours)

    Figure 6.  Rendezvous points (small white dots) for TCO #1. Also shown are vectors indicating the direction of the velocity of the spacecraft and direction of the Sun for each rendezvous point

    Figure 7.  Rendezvous points (in white) for TCOs #1-100 (right). These are still only a small portion of all the rendezvous points $ \mathbf{q}_{rdvz} $ we consider for the 16,923 minimoons

    Figure 8.  Example of cloud extremal construction. In plain, our constructed trajectory. In dashed, the resulting cloud extremal. The Earth (left) and Moon (right) are shown as black circles, and the CR3BP equilibrium points $ L_i $ are plotted for reference as x's

    Figure 9.  Control structure for constructing cloud extremals

    Figure 10.  The Halo orbit discretized into 100 equally spaced (in terms of time) points

    Figure 11.  Delta-v distribution for the 12,558 cloud elements

    Figure 12.  Transfer time distribution for the 12,558 cloud elements

    Figure 13.  Initial Sun true anomaly distribution for the 12,558 cloud elements

    Figure 14.  Positions $ \mathbf{s}_{cloud} $ of cloud points $ \mathbf{q}_{cloud} $ for the 12,558 cloud elements, shown at different zoom levels

    Figure 15.  Distribution of TCO cloud distances (LD, position only). Left: all TCOs, Right: truncated for distances less than 0.5 LD only

    Figure 16.  Distribution of TCO cloud distances (non-dimensional, position and velocity)

    Figure 17.  Initial results: Distribution of Δv for 1,338 computed transfers

    Figure 18.  Initial results: Rendezvous with TCO #9. The Moon's orbit is shown as the ellipse around the Earth (gray dot). The thin grey path is the orbit of the TCO, starting from its capture point (triangle) to its escape point (square). The circle on the TCO orbit marks where the TCO was when the craft departed, and the star is the point of rendezvous. The dark gray path is the spacecraft's trajectory. It's three boosts are marked as white dots (including the final rendezvous boost)

    Figure 19.  Initial results: Rendezvous with minimoon #14. The legend is the same as for Figure 18

    Figure 20.  Initial results: Distribution of $ \Delta v $ for the best computed transfers for 93 minimoons

    Figure 21.  Initial results: Position components of $ \mathbf{q}_{rdvz} $ versus $ \Delta v $

    Figure 22.  Initial results: Velocity components of $ \mathbf{q}_{rdvz} $ versus $ \Delta v $

    Figure 23.  Initial results: CR3BP Energy at $ \mathbf{q}_{rdvz} $ versus $ \Delta v $

    Figure 24.  Initial results: CR3BP Energy at $ \mathbf{q}_{cloud} $ versus resulting $ \Delta v $

    Figure 25.  Initial results: Transfer times versus $ \Delta v $

    Figure 26.  Initial results: Continuation distance versus $ \Delta v $

    Figure 27.  Initial results: Continuation final Sun true anomaly difference versus $ \Delta v $

    Figure 28.  Large scale results: Distribution of $ \Delta v $ for the 3,000 TCOs

    Figure 29.  Large scale results: Rendezvous with minimoon #9,046

    Figure 30.  Large scale results: Rendezvous with minimoon #16,844

    Figure 31.  Original (left) and refined (right) rendezvous with minimoon #5

    Figure 32.  Refined results: distribution of $ \Delta v $ improvement for 93 TCOs

    Figure 33.  Original (left) and refined (right) rendezvous with TCO #40

    Figure 34.  Original (left) and refined (right) rendezvous with TCO #9,046

    Table 1.  Numerical values for the CR3BP and the CR4BP

    CR3BP parameters CR4BP parameters
    $ \mu $ $ 1.2153\cdot 10^{-1} $ $ \mu_S $ $ 3.289\cdot 10^5 $
    1 norm. dist. (LD) $ 384400 $ km $ r_S $ $ 3.892\cdot 10^2 $
    1 norm. time $ 104.379 $ h $ \omega_S $ $ -0.925 $ rad/norm. time
     | Show Table
    DownLoad: CSV

    Table 2.  Comparison of chosen values $ t_i $ versus solution values $ t_i^* $. Units are in hours

    $ t_1 $ $ t_2 $ $ t_3 $ $ t_4 $
    1.00 240.00 241.00 479.00
    $ t_1^* $ $ t_2^* $ $ t_3^* $ $ t_4^* $
    0.42 265.64 266.43 478.62
     | Show Table
    DownLoad: CSV

    Table 3.  Comparison of chosen values $ \mathbf{P}(0) $ versus solution values $ \mathbf{P}(0)^* $

    $ p_x(0) $ $ p_y(0) $ $ p_z(0) $ $ p_{\dot{x}}(0) $ $ p_{\dot{y}}(0) $ $ p_{\dot{z}}(0) $ $ p_m(0) $
    0.0059 -0.0022 -0.0075 -0.0026 0.0051 -0.0070 -0.0000089
    $ p_x^*(0) $ $ p_y^*(0) $ $ p_z^*(0) $ $ p_{\dot{x}}^*(0) $ $ p_{\dot{y}}^*(0) $ $ p_{\dot{z}}^*(0) $ $ p_m^*(0) $
    0.1029 -0.0144 -0.0323 0.0116 0.0301 0.0015 -0.000071
     | Show Table
    DownLoad: CSV

    Table 4.  Initial results: Winding number pairs and corresponding $ \Delta v $ statistics for 1,338 transfers

    $ w_e $ $ w_m $ count mean $ \Delta v $ median $ \Delta v $ min $ \Delta v $ max $ \Delta v $
    -1 -1 640 919.6 891.6 255.9 2171.2
    -2 -2 241 1003.7 956.5 195.6 4850.1
    0 0 78 977.0 889.9 428.9 2241.0
    -3 -3 54 1044.9 857.5 354.1 3753.0
    1 1 48 1030.3 864.2 782.5 2886.7
    -1 0 39 781.4 788.4 269.5 1259.0
    -5 -5 28 633.7 502.5 368.6 959.9
    -2 -1 24 919.3 893.7 387.8 1468.1
    -4 -4 22 1478.8 1000.8 397.1 2947.7
    0 1 22 1891.7 2059.4 898.6 2480.2
    -2 -3 21 1034.6 937.0 410.3 2033.3
    -1 -2 18 1042.9 987.1 409.4 1855.2
    -4 -3 15 1579.3 1460.0 775.5 2767.9
    0 -1 13 1018.2 1019.4 462.9 1524.1
    2 0 13 2788.0 3113.7 683.6 3160.3
    -4 -5 10 2207.8 2201.8 2163.5 2264.7
    -5 -4 6 851.0 795.7 740.2 1116.2
    -3 -4 6 1361.4 1474.7 574.1 1695.3
    -3 -2 5 1163.4 1361.2 388.0 1438.9
    -2 2 4 906.0 900.5 846.6 976.4
    -6 -4 3 886.8 883.0 632.3 1145.0
    -3 -1 3 1924.5 1926.2 1909.6 1937.6
    -1 1 3 898.1 753.7 641.6 1298.9
    3 1 3 1363.8 1363.8 1363.8 1363.8
    -18 2 2 3072.1 3072.1 3063.3 3081.0
    -1 -3 2 1723.9 1723.9 1653.3 1794.5
    2 -1 2 902.9 902.9 559.6 1246.2
    2 1 2 1089.8 1089.8 1048.6 1131.0
    3 0 2 1090.1 1090.1 813.0 1367.1
    11 2 2 5735.4 5735.4 5015.0 6455.7
    -5 -3 1 700.9 700.9 700.9 700.9
    -4 -2 1 857.7 857.7 857.7 857.7
    -2 0 1 710.7 710.7 710.7 710.7
    4 3 1 1447.7 1447.7 1447.7 1447.7
    6 1 1 1351.3 1351.3 1351.3 1351.3
    7 1 1 1165.2 1165.2 1165.2 1165.2
    8 1 1 1095.6 1095.6 1095.6 1095.6
     | Show Table
    DownLoad: CSV
  • [1] EL. Allgower and K. Georg, Numerical Continuation Methods, An Introduction, Springer, Berlin, 1990. doi: 10.1007/978-3-642-61257-2.
    [2] B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory, Springer-Verlag Berlin, 2003.
    [3] B. BolinR. JedickeM. GranvikP. BrownE. HowellM. NolanM. ChybaG. Patterson and R. Wainscoat, Detecting earth's temporarily captured natural irregular satellites - minimoons, Icarus, 241 (2014), 280-297.  doi: 10.1016/j.icarus.2014.05.026.
    [4] B. J. CaillauO. Cots and J. Gergaud, Differential continuation for regular optimal control problems, Optimization Methods and Software, 27 (2012), 177-196.  doi: 10.1080/10556788.2011.593625.
    [5] J. B. Caillau, O. Cots and J. Gergaud, HAMPATH: on solving optimal control problems by indirect and path following methods, , http://apo.enseeiht.fr/hampath.
    [6] B. J. CaillauB. Daoud and J. Gergaud, Minimum fuel control of the planar circular restricted three-body problem, Celestial Mech. Dynam. Astronom., 114 (2012), 137-150.  doi: 10.1007/s10569-012-9443-x.
    [7] M. Chyba, T. Haberkorn and R. Jedicke, Minimum fuel round trip from a L2 Earth-Moon Halo orbit to Asteroid 2006RH120, Recent Advances in Celestial and Space Mechanics, Mathematics for Industry, Springer-Verlag, Japan, To Appear, 2016. doi: 10.1007/978-3-319-27464-5_4.
    [8] M. ChybaG. PattersonG. PicotM. GranvikR. Jedicke and J. Vaubaillon, Designing rendezvous missions with mini-moons using geometric optimal control, Journal of Industrial and Management Optimization, 10 (2014), 477-501.  doi: 10.3934/jimo.2014.10.477.
    [9] M. ChybaG. PattersonG. PicotM. GranvikR. Jedicke and J. Vaubaillon, Time-minimal orbital transfers to temporarily-captured natural Earth satellites, Springer Verlag: Advances in Optimization and Control with Applications, 86 (2014), 213-235.  doi: 10.1007/978-3-662-43404-8_12.
    [10] AV. Dmitruk and AM. Kaganovich, The hybrid maximum principle is a consequence of the pontryagin maximum principle, Systems Control Lett., 57 (2008), 964-970.  doi: 10.1016/j.sysconle.2008.05.006.
    [11] M. GranvikJ. Vaubaillon and R. Jedicke, The population of natural Earth satellites, Icarus, 218 (2011), 262-277.  doi: 10.1016/j.icarus.2011.12.003.
    [12] G. Mingotti, F. Topputo and F. Bernelli-Zazzera, A Method to Design Sun-Perturbed Earth-to-Moon Low-thrust Transfers with Ballistic Capture, AIDAA, 2007.
    [13] G. Patterson, Asteroid Rendezvous Missions Using Indirect Methods of Optimal Control, University of Hawaii at Manoa, dissertation, 2015.
    [14] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, John Wiley & Sons, New York, 1962.
    [15] C. Russell and V. Angelopoulos, The ARTEMIS Mission (Google eBook), Springer Science & Business Media, Nov 18, 2013 - Science - 112 pages.
    [16] D. Scheeres, The restricted hill four-body problem with applications to the earth-moon-sun system, Celestial Mechanics and Dynamical Astronomy, 70 (1998), 75-98.  doi: 10.1023/A:1026498608950.
    [17] F. Topputo, On optimal two-impulse Earth-Moon transfers in a four-body model, Celest. Mech. Dyn. Astr., 117 (2013), 279-313.  doi: 10.1007/s10569-013-9513-8.
    [18] Hodei Urrutxua, Daniel J. Scheeres, Claudio Bombardelli, Juan L. Gonzalo and Jesús Peláez", What Does it Take to Capture an Asteroid? A Case Study on Capturing Asteroid 2006 RH120, Advances in the Astronautical Sciences, (2014), AAS 14-276.
    [19] T. H. SweetserS. B. BroschartV. AngelopoulosG. J. WhiffenD. C. FoltaM-K. ChungS. J. Hatch and M. A. Woodard, ARTEMIS mission design, Space Science Reviews, 165 (2011), 27-57. 
    [20] V. SzebehelyTheory of Orbits: The Restricted Problem of Three Bodies, Academic Press, 1967. 
  • 加载中

Figures(34)

Tables(4)

SHARE

Article Metrics

HTML views(2332) PDF downloads(248) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return