\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal sparse output feedback for networked systems with parametric uncertainties

An earlier version of the paper appears in the proceedings of American Control Conference 2018

Abstract / Introduction Full Text(HTML) Figure(2) Related Papers Cited by
  • This paper investigates the design of block row/column-sparse distributed static output ${H}_2$ feedback control for interconnected systems with polytopic uncertainties. The proposed approach is applicable to the networked systems with publisher/subscriber communication topology. We added two additional terms into the optimisation index function to penalise the number of publishers and subscribers. To optimally select a subset of available publishers and/or subscribers in the network, we introduced both an explicit scheme and an iterative process to handle this problem. We demonstrated the effectiveness by using a numerical example. The example showed that the simultaneous identification of favourable networks topologies and design of controller strategy can be achieved by using the proposed method.

    Mathematics Subject Classification: Primary: 90C22, 90C35; Secondary: 93A15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Networked System Architecture

    Figure 2.  Structure of block row/column-sparse SOF gains for different values of $\Psi_s$ and $\Psi_p$

  • [1] R. Arastoo, Y. GhaedSharaf, M. V. Kothare and N. Motee, Optimal state feedback controllers with strict row sparsity constraints, in American Control Conference (ACC), IEEE, (2016), 1948–1953.
    [2] A. ArghaS. W. SuA. Savkin and B. Celler, A framework for optimal actuator/sensor selection in a control system, International Journal of Control, 92 (2019), 242-260.  doi: 10.1080/00207179.2017.1350755.
    [3] A. Argha, S. W. Su and A. Savkin, Optimal actuator/sensor selection through dynamic output feedback, in Decision and Control (CDC), IEEE, (2016), 3624–3629.
    [4] A. ArghaL. Li and S. W. Su, Design of $H_2$ ($H_{\infty}$)-based optimal structured and sparse static output feedback gains, Journal of the Franklin Institute, 354 (2017), 4156-4178.  doi: 10.1016/j.jfranklin.2017.03.011.
    [5] A. ArghaS. W. SuA. Savkin and B. G. Celler, Mixed $H_2/H_{\infty}$-based actuator selection for uncertain polytopic systems with regional pole placement, International Journal of Control, 91 (2018), 320-336.  doi: 10.1080/00207179.2017.1279753.
    [6] A. ArghaL. Li and S. W. Su, $H_2$-based optimal sparse sliding mode control for networked control systems, International Journal of Robust and Nonlinear Control, 28 (2018), 16-30.  doi: 10.1002/rnc.3852.
    [7] E. J. CandesM. B. Wakin and S. P. Boyd, Enhancing sparsity by reweighted $\ell_1$ minimization, Journal of Fourier Analysis and Applications, 14 (2008), 877-905.  doi: 10.1007/s00041-008-9045-x.
    [8] M. Fardad, F. Lin and M. R. Jovanovic, Sparsity-promoting optimal control for a class of distributed systems, in Proc. the American Control Conference, San Francisco, CA, USA, (2011), 2050–2055.
    [9] M. Fardad and M. R. Jovanovic, On the design of optimal structured and sparse feedback gains via sequential convex programming, in American Control Conference (ACC), IEEE, (2014), 2426–2431.
    [10] F. LinM. Fardad and M. Jovanovic, Augmented lagrangian approach to design of structured optimal state feedback gains, IEEE Trans. Autom. Control, 56 (2011), 2923-2929.  doi: 10.1109/TAC.2011.2160022.
    [11] G. PipeleersB. DemeulenaereJ. Swevers and L. Vandenberghe, Extended LMI characterizations for stability and performance of linear systems, Systems & Control Letters, 58 (2009), 510-518.  doi: 10.1016/j.sysconle.2009.03.001.
    [12] M. Razeghi-Jahromi and A. Seyedi, Stabilization of networked control systems with sparse observer-controller networks, IEEE Transactions on Automatic Control, 60 (2015), 1686-1691.  doi: 10.1109/TAC.2014.2360310.
    [13] J. Rubió-MassegúJ. M. RossellH. R. Karimi and F. Palacios-Quiñonero, Static output-feedback control under information structure constraints, Automatica, 49 (2013), 313-316.  doi: 10.1016/j.automatica.2012.10.012.
    [14] D. D. Šiljak and A. Zečević, Control of large-scale systems: Beyond decentralized feedback, Annual Reviews in Control, 29 (2005), 169-179. 
    [15] D. Siljak, Decentralized Control of Complex Systems, Dover Publications, 2012.
    [16] M. Staroswiecki and A. M. Amani, Fault-tolerant control of distributed systems by information pattern reconfiguration, International Journal of Adaptive Control and Signal Processing, 2014. doi: 10.1002/acs.2497.
    [17] S. SchulerU. Münz and F. Allgöwer, Decentralized state feedback control for interconnected systems with application to power systems, Journal of Process Control, 24 (2014), 379-388. 
    [18] M. Van De Wal and B. De Jager, A review of methods for input/output selection, Automatica, 37 (2001), 487-510.  doi: 10.1016/S0005-1098(00)00181-3.
    [19] X. Wang and M. Lemmon, Event-triggering in distributed networked control systems, IEEE Transactions on Automatic Control, 56 (2011), 586-601.  doi: 10.1109/TAC.2010.2057951.
    [20] A. Zecevic and D. Siljak, Global low-rank enhancement of decentralized control for large-scale systems, IEEE Transactions on Automatic Control, 50 (2005), 740-744.  doi: 10.1109/TAC.2005.847054.
    [21] D. M. Zoltowski, N. Dhingra, F. Lin and M. R. Jovanovic, Sparsity-promoting optimal control of spatially-invariant systems, in American Control Conference (ACC) IEEE, (2014), 1255–1260.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(2809) PDF downloads(344) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return