September  2019, 9(3): 383-391. doi: 10.3934/naco.2019025

Singular arma systems: A structure theory

Institute for Statistics and Mathematical Methods in Economics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria

Received  July 2018 Revised  April 2019 Published  May 2019

Singular vector ARMA systems are vector ARMA (VARMA) systems with singular innovation variance or equivalently with singular spectral density of the corresponding VARMA process. Such systems occur in linear dynamic factor models, e.g. if the dimension of the static factors is strictly larger than the dimension of the dynamic factors or in linear dynamic stochastic equilibrium models, if the number of outputs is strictly larger than the number of shocks. We describe the relation of factor models and singular ARMA systems and a realization procedure for singular ARMA systems. Finally we discuss kernel systems.

Citation: Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025
References:
[1]

B. D. O. Anderson and M. Deistler, Properties of zero-free transfer function matrices, SICE Journal of Control, Measurement and System Integration, 1 (2008), 284-292.  doi: 10.1109/TAC.2009.2028976.

[2]

H. Akaike, Stochastic theory of minimal realization, IEEE-TAC, 19 (1974), 667-674.  doi: 10.1109/tac.1974.1100707.

[3]

M. Deistler and W. Scherrer, Modelle der Zeitreihenanalyse, Birkhuser-Springer, Cham, 2018.

[4]

M. DeistlerB. D. O. AndersonA. FillerC. Zinner and W. Chen, Generalized dynamic factor models - An approach via singular autoregressions, European Journal of Control, 16 (2010), 1-14.  doi: 10.3166/ejc.16.211-224.

[5]

M. ForniM. HallinM. Lippi and L. Reichlin, The generalized dynamic factor model: identification and estimation, The Review of Economics and Statistics, 82 (2000), 540-554. 

[6]

M. ForniM. HallinM. Lippi and P. Zaffaroni, Dynamic factor models with infinite dimensional factor spaces: one-sided representations, Journal of Econometrics, 185 (2015), 359-371.  doi: 10.1016/j.jeconom.2013.10.017.

[7]

E. J. Hannan, M. Deistler, The Statistical Theory of Linear Systems, SIAM Classics in Applied Mathematics, Philadelphia, 2012. doi: 10.1137/1.9781611972191.ch1.

[8]

B. L. Ho and R. E. Kalman, Effective construction of linear state-variable models from input/output functions, Regelungstechnik, 14 (1966), 545-592. 

[9]

I. Komunjer and S. Ng, Dynamic identification of dynamic stochastic general equilibrium models, Econometrica, 79 (2011), 1995-2032.  doi: 10.3982/ECTA8916.

[10]

Y. A. Rozanov, Stationary Random Processes, Holden Day, San Francisco, 1967.

[11]

W. Scherrer and M. Deistler, A structure theory for linear dynamic errors-in-variables models, SIAM J. Cont. Opt, 36 (1998), 2148-2175.  doi: 10.1137/S0363012994262464.

show all references

References:
[1]

B. D. O. Anderson and M. Deistler, Properties of zero-free transfer function matrices, SICE Journal of Control, Measurement and System Integration, 1 (2008), 284-292.  doi: 10.1109/TAC.2009.2028976.

[2]

H. Akaike, Stochastic theory of minimal realization, IEEE-TAC, 19 (1974), 667-674.  doi: 10.1109/tac.1974.1100707.

[3]

M. Deistler and W. Scherrer, Modelle der Zeitreihenanalyse, Birkhuser-Springer, Cham, 2018.

[4]

M. DeistlerB. D. O. AndersonA. FillerC. Zinner and W. Chen, Generalized dynamic factor models - An approach via singular autoregressions, European Journal of Control, 16 (2010), 1-14.  doi: 10.3166/ejc.16.211-224.

[5]

M. ForniM. HallinM. Lippi and L. Reichlin, The generalized dynamic factor model: identification and estimation, The Review of Economics and Statistics, 82 (2000), 540-554. 

[6]

M. ForniM. HallinM. Lippi and P. Zaffaroni, Dynamic factor models with infinite dimensional factor spaces: one-sided representations, Journal of Econometrics, 185 (2015), 359-371.  doi: 10.1016/j.jeconom.2013.10.017.

[7]

E. J. Hannan, M. Deistler, The Statistical Theory of Linear Systems, SIAM Classics in Applied Mathematics, Philadelphia, 2012. doi: 10.1137/1.9781611972191.ch1.

[8]

B. L. Ho and R. E. Kalman, Effective construction of linear state-variable models from input/output functions, Regelungstechnik, 14 (1966), 545-592. 

[9]

I. Komunjer and S. Ng, Dynamic identification of dynamic stochastic general equilibrium models, Econometrica, 79 (2011), 1995-2032.  doi: 10.3982/ECTA8916.

[10]

Y. A. Rozanov, Stationary Random Processes, Holden Day, San Francisco, 1967.

[11]

W. Scherrer and M. Deistler, A structure theory for linear dynamic errors-in-variables models, SIAM J. Cont. Opt, 36 (1998), 2148-2175.  doi: 10.1137/S0363012994262464.

[1]

Jonathan Ansari, Ludger Rüschendorf. Upper risk bounds in internal factor models with constrained specification sets. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 3-. doi: 10.1186/s41546-020-00045-y

[2]

Alina Chertock, Changhui Tan, Bokai Yan. An asymptotic preserving scheme for kinetic models with singular limit. Kinetic and Related Models, 2018, 11 (4) : 735-756. doi: 10.3934/krm.2018030

[3]

Ibrar Hussain, Haider Ali, Muhammad Shahkar Khan, Sijie Niu, Lavdie Rada. Robust region-based active contour models via local statistical similarity and local similarity factor for intensity inhomogeneity and high noise image segmentation. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022014

[4]

Urszula Ledzewicz, Heinz Schättler. On the optimality of singular controls for a class of mathematical models for tumor anti-angiogenesis. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 691-715. doi: 10.3934/dcdsb.2009.11.691

[5]

Kamil Rajdl, Petr Lansky. Fano factor estimation. Mathematical Biosciences & Engineering, 2014, 11 (1) : 105-123. doi: 10.3934/mbe.2014.11.105

[6]

Noriaki Kawaguchi. Maximal chain continuous factor. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5915-5942. doi: 10.3934/dcds.2021101

[7]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

[8]

John M. Hong, Cheng-Hsiung Hsu, Bo-Chih Huang, Tzi-Sheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1501-1526. doi: 10.3934/cpaa.2013.12.1501

[9]

Kai-Uwe Schmidt, Jonathan Jedwab, Matthew G. Parker. Two binary sequence families with large merit factor. Advances in Mathematics of Communications, 2009, 3 (2) : 135-156. doi: 10.3934/amc.2009.3.135

[10]

Ryusuke Kon. Dynamics of competitive systems with a single common limiting factor. Mathematical Biosciences & Engineering, 2015, 12 (1) : 71-81. doi: 10.3934/mbe.2015.12.71

[11]

Ke Ruan, Masao Fukushima. Robust portfolio selection with a combined WCVaR and factor model. Journal of Industrial and Management Optimization, 2012, 8 (2) : 343-362. doi: 10.3934/jimo.2012.8.343

[12]

Yanming Ge. Analysis of airline seat control with region factor. Journal of Industrial and Management Optimization, 2012, 8 (2) : 363-378. doi: 10.3934/jimo.2012.8.363

[13]

Wu Chanti, Qiu Youzhen. A nonlinear empirical analysis on influence factor of circulation efficiency. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 929-940. doi: 10.3934/dcdss.2019062

[14]

Brandon Seward. Every action of a nonamenable group is the factor of a small action. Journal of Modern Dynamics, 2014, 8 (2) : 251-270. doi: 10.3934/jmd.2014.8.251

[15]

Shaoyong Lai, Yulan Zhou. A stochastic optimal growth model with a depreciation factor. Journal of Industrial and Management Optimization, 2010, 6 (2) : 283-297. doi: 10.3934/jimo.2010.6.283

[16]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3043-3054. doi: 10.3934/dcdss.2020463

[17]

Sebastian Acosta. A control approach to recover the wave speed (conformal factor) from one measurement. Inverse Problems and Imaging, 2015, 9 (2) : 301-315. doi: 10.3934/ipi.2015.9.301

[18]

Yury Arlinskiĭ, Eduard Tsekanovskiĭ. Constant J-unitary factor and operator-valued transfer functions. Conference Publications, 2003, 2003 (Special) : 48-56. doi: 10.3934/proc.2003.2003.48

[19]

Xuchen Lin, Ting-Jie Lu, Xia Chen. Total factor productivity growth and technological change in the telecommunications industry. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 795-809. doi: 10.3934/dcdss.2019053

[20]

Antonio Algaba, Natalia Fuentes, Cristóbal García, Manuel Reyes. Non-formally integrable centers admitting an algebraic inverse integrating factor. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 967-988. doi: 10.3934/dcds.2018041

 Impact Factor: 

Metrics

  • PDF downloads (234)
  • HTML views (467)
  • Cited by (2)

Other articles
by authors

[Back to Top]