• Previous Article
    $ \theta $ scheme with two dimensional wavelet-like incremental unknowns for a class of porous medium diffusion-type equations
  • NACO Home
  • This Issue
  • Next Article
    Numerical solutions of Volterra integro-differential equations using General Linear Method
December  2019, 9(4): 445-460. doi: 10.3934/naco.2019026

System of generalized mixed nonlinear ordered variational inclusions

Department of Mathematics, Jazan University, Jazan, 45142, KSA

* Corresponding author: Salahuddin

Received  November 2017 Revised  April 2019 Published  May 2019

In this paper, we consider a system of generalized mixed nonlinear ordered variational inclusions in partially ordered Banach spaces and suggest an algorithm for a solution of the considered system. We prove an existence and convergence result for the solution of the system of generalized mixed nonlinear ordered variational inclusions.

Citation: Salahuddin. System of generalized mixed nonlinear ordered variational inclusions. Numerical Algebra, Control & Optimization, 2019, 9 (4) : 445-460. doi: 10.3934/naco.2019026
References:
[1]

R. AhmadM. F. Khan and Sa lahuddin, Mann and Ishikawa type perturbed iterative algorithm for generalized nonlinear variational inclusions, Math. Comput. Appl., 6 (2001), 47-52.  doi: 10.3390/mca6010047.  Google Scholar

[2]

M. K. Ahmad and Sa lahuddin, Resolvent equation technique for generalized nonlinear variational inclusions, Adv. Nonlinear Var. Inequal., 5 (2002), 91-98.   Google Scholar

[3]

M. K. Ahmad and Salahuddin, Perturbed three step approximation process with errors for a general implicit nonlinear variational inequalities, Int. J. Math. Math. Sci., Article ID 43818, (2006), 1–14. doi: 10.1155/IJMMS/2006/43818.  Google Scholar

[4]

M. K. Ahmad and Salahuddin, Generalized strongly nonlinear implicit quasi-variational inequalities, J. Inequal. Appl., 2009 (2009), Article ID 124953, 1–16. doi: 10.1155/2009/124953.  Google Scholar

[5]

H. Amann, On the number of solutions of nonlinear equations in ordered Banach spaces, J. Funct. Anal., 11 (1972), 346-384.  doi: 10.1016/0022-1236(72)90074-2.  Google Scholar

[6]

X. P. Ding and H. R. Feng, Algorithm for solving a new class of generalized nonlinear implicit quasi variational inclusions in Banach spaces, Appl. Math. Comput., 208 (2009), 547-555.  doi: 10.1016/j.amc.2008.12.028.  Google Scholar

[7]

X. P. Ding and Sa lahuddin, On a system of general nonlinear variational inclusions in Banach spaces, Appl. Math. Mech., 36 (2015), 1663-1672.  doi: 10.1007/s10483-015-2001-6.  Google Scholar

[8]

Y. P. Du, Fixed points of increasing operators in ordered Banach spaces and applications, Anal., 38 (1990), 1-20.  doi: 10.1080/00036819008839957.  Google Scholar

[9]

Y. P. FangN. J. Huang and H. B. Thompson, A new system of variational inclusions with $(H, \eta)$-monotone operators in Hilbert spaces, Comput. Math. Appl., 49 (2005), 365-374.  doi: 10.1016/j.camwa.2004.04.037.  Google Scholar

[10]

X. F. HeJ. L. Lou and Z. He, Iterative methods for solving variational inclusions in Banach spaces, J. Comput. Appl. Math., 203 (2007), 80-86.  doi: 10.1016/j.cam.2006.03.011.  Google Scholar

[11]

N. J. Huang and Y. P. Fang, Generalized $m$-accretive mappings in Banach spaces, J. Sichuan Univ., 38 (2001), 591-592.   Google Scholar

[12]

S. HussainM. F. Khan and Sa lahuddin, Mann and Ishikawa type perturbed iterative algorithms for completely generalized nonlinear variational inclusions, Int. J. Math. Anal., 3 (2006), 51-62.   Google Scholar

[13]

P. JunlouchaiS. Plubtieng and Sa lahuddin, On a new system of nonlinear regularized nonconvex variational inequalities in Hilbert spaces, J. Nonlinear Anal. Optim., 7 (2016), 103-115.   Google Scholar

[14]

M. F. Khan and Sa lahuddin, Mixed multivalued variational inclusions involving H-accretive operators, Adv. Nonlinear Var. Inequal., 9 (2006), 29-47.   Google Scholar

[15]

M. F. Khan and Salahuddin, Generalized co-complementarity problems in p-uniformly smooth Banach spaces, JIPAM, J. Inequal. Pure Appl. Math., 7 (2006), 1–11, Article ID 66.  Google Scholar

[16]

M. F. Khan and Sa lahuddin, Generalized multivalued nonlinear co-variational inequalities in Banach spaces, Funct. Diff. Equat., 14 (2007), 299-313.   Google Scholar

[17]

B. S. Lee and Sa lahuddin, Fuzzy general nonlinear ordered random variational inequalities in ordered Banach spaces, East Asian Math. J., 32 (2016), 685-700.   Google Scholar

[18]

B. S. LeeM. F. Khan and Sa lahuddin, Generalized nonlinear quasi-variational inclusions in Banach spaces, Comput. Math. Appl., 56 (2008), 1414-1422.  doi: 10.1016/j.camwa.2007.11.053.  Google Scholar

[19]

B. S. LeeM. F. Khan and Sa lahuddin, Hybrid-type set-valued variational-like inequalities in Reflexive Banach spaces, J. Appl. Math. Inform., 27 (2009), 1371-1379.   Google Scholar

[20]

H. G. Li, L. P. Li, J. M. Zheng and M. M. Jin, Sensitivity analysis for generalized set-valued parametric ordered variational inclusion with $(\alpha, \lambda)$-nodsm mappings in ordered Banach spaces, Fixed Point Theory Appl., 2014 (2014), 122. doi: 10.1186/1687-1812-2014-122.  Google Scholar

[21]

H. G. Li, D. Qui and Y. Zou, Characterization of weak-anodd set-valued mappings with applications to approximate solution of gnmoqv inclusions involving $\oplus$ operator in ordered Banach spaces, Fixed Point Theory Appl., 2013 (2013), 241. doi: 10.1186/1687-1812-2013-241.  Google Scholar

[22]

H. G. Li, L. P. Li and M. M. Jin, A class of nonlinear mixed ordered inclusion problems for oredered $(\alpha_a, \lambda)$-ANODM set-valued mappings with strong comparison mapping, Fixed Point Theory Appl., 2014 (2014), 79. doi: 10.1186/1687-1812-2014-79.  Google Scholar

[23]

H. G. Li, A nonlinear inclusion problem involving $(\alpha, \lambda)$-NODM set-valued mappings in ordered Hilbert space, Appl. Math. Lett., 25 (2012), 1384-1388.  doi: 10.1016/j.aml.2011.12.007.  Google Scholar

[24]

H. G. Li, Approximation solution for general nonlinear ordered variational inequalities and ordered equations in ordered Banach space, Nonlinear Anal. Forum, 13 (2008), 205-214.   Google Scholar

[25]

H. G. Li, D. Qiu and M. M. Jin, GNM ordered variational inequality system with ordered Lipschitz continuous mappings in an ordered Banach space, J. Inequal. Appl., 2013 (2013), 514. doi: 10.1186/1029-242X-2013-514.  Google Scholar

[26]

H. G. Li, X. B. Pan, Z. Y. Deng and C. Y. Wang, Solving GNOVI frameworks involving $(\gamma_g, \lambda)$-weak-GRD set-valued mappings in positive Hilbert spaces, Fixed Point Theory Appl., 2014 (2014), 146. doi: 10.1186/1687-1812-2014-146.  Google Scholar

[27]

H. H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin, 1994.  Google Scholar

[28]

Sa lahuddin, Regularized equilibrium problems in Banach spaces, Korean J. Math., 24 (2016), 51-63.  doi: 10.11568/kjm.2016.24.1.51.  Google Scholar

[29]

Sa lahuddin, Solvability for a system of generalized nonlinear ordered variational inclusions in ordered Banach spaces, Korean J. Math., 25 (2017), 359-377.   Google Scholar

[30]

Sa lahuddin and S. S. Irfan, Proximal methods for quasi-variational inequalities, Math. Computat. Appl., 9 (2004), 165-172.  doi: 10.3390/mca9020165.  Google Scholar

[31]

A. H. SiddiqiM. K. Ahmad and Sa lahuddin, Existence results for generalized nonlinear variational inclusions, Appl. Math. Lett., 18 (2005), 859-864.  doi: 10.1016/j.aml.2004.08.015.  Google Scholar

[32]

Y. K. Tang, S. S. Chang and Salahuddin, A system of nonlinear set valued variational inclusions, SpringerPlus, 3 (2014), 318. Google Scholar

[33]

R. U. Verma, Projection methods, algorithms and a new system of nonlinear variational inequalities, Comput. Math. Appl., 41 (2001), 1025-1031.  doi: 10.1016/S0898-1221(00)00336-9.  Google Scholar

[34]

R. U. VermaM. F. Khan and Sa lahuddin, Fuzzy generalized complementarity problems in Banach spaces, PanAmer. Math. J., 17 (2007), 71-80.   Google Scholar

[35]

R. U. Verma and Sa lahuddin, Extended systems of nonlinear vector quasi variational inclusions and extended systems of nonlinear vector quasi optimization problems in locally FC-spaces, Commun. Appl. Nonlinear Anal., 23 (2016), 71-88.   Google Scholar

show all references

References:
[1]

R. AhmadM. F. Khan and Sa lahuddin, Mann and Ishikawa type perturbed iterative algorithm for generalized nonlinear variational inclusions, Math. Comput. Appl., 6 (2001), 47-52.  doi: 10.3390/mca6010047.  Google Scholar

[2]

M. K. Ahmad and Sa lahuddin, Resolvent equation technique for generalized nonlinear variational inclusions, Adv. Nonlinear Var. Inequal., 5 (2002), 91-98.   Google Scholar

[3]

M. K. Ahmad and Salahuddin, Perturbed three step approximation process with errors for a general implicit nonlinear variational inequalities, Int. J. Math. Math. Sci., Article ID 43818, (2006), 1–14. doi: 10.1155/IJMMS/2006/43818.  Google Scholar

[4]

M. K. Ahmad and Salahuddin, Generalized strongly nonlinear implicit quasi-variational inequalities, J. Inequal. Appl., 2009 (2009), Article ID 124953, 1–16. doi: 10.1155/2009/124953.  Google Scholar

[5]

H. Amann, On the number of solutions of nonlinear equations in ordered Banach spaces, J. Funct. Anal., 11 (1972), 346-384.  doi: 10.1016/0022-1236(72)90074-2.  Google Scholar

[6]

X. P. Ding and H. R. Feng, Algorithm for solving a new class of generalized nonlinear implicit quasi variational inclusions in Banach spaces, Appl. Math. Comput., 208 (2009), 547-555.  doi: 10.1016/j.amc.2008.12.028.  Google Scholar

[7]

X. P. Ding and Sa lahuddin, On a system of general nonlinear variational inclusions in Banach spaces, Appl. Math. Mech., 36 (2015), 1663-1672.  doi: 10.1007/s10483-015-2001-6.  Google Scholar

[8]

Y. P. Du, Fixed points of increasing operators in ordered Banach spaces and applications, Anal., 38 (1990), 1-20.  doi: 10.1080/00036819008839957.  Google Scholar

[9]

Y. P. FangN. J. Huang and H. B. Thompson, A new system of variational inclusions with $(H, \eta)$-monotone operators in Hilbert spaces, Comput. Math. Appl., 49 (2005), 365-374.  doi: 10.1016/j.camwa.2004.04.037.  Google Scholar

[10]

X. F. HeJ. L. Lou and Z. He, Iterative methods for solving variational inclusions in Banach spaces, J. Comput. Appl. Math., 203 (2007), 80-86.  doi: 10.1016/j.cam.2006.03.011.  Google Scholar

[11]

N. J. Huang and Y. P. Fang, Generalized $m$-accretive mappings in Banach spaces, J. Sichuan Univ., 38 (2001), 591-592.   Google Scholar

[12]

S. HussainM. F. Khan and Sa lahuddin, Mann and Ishikawa type perturbed iterative algorithms for completely generalized nonlinear variational inclusions, Int. J. Math. Anal., 3 (2006), 51-62.   Google Scholar

[13]

P. JunlouchaiS. Plubtieng and Sa lahuddin, On a new system of nonlinear regularized nonconvex variational inequalities in Hilbert spaces, J. Nonlinear Anal. Optim., 7 (2016), 103-115.   Google Scholar

[14]

M. F. Khan and Sa lahuddin, Mixed multivalued variational inclusions involving H-accretive operators, Adv. Nonlinear Var. Inequal., 9 (2006), 29-47.   Google Scholar

[15]

M. F. Khan and Salahuddin, Generalized co-complementarity problems in p-uniformly smooth Banach spaces, JIPAM, J. Inequal. Pure Appl. Math., 7 (2006), 1–11, Article ID 66.  Google Scholar

[16]

M. F. Khan and Sa lahuddin, Generalized multivalued nonlinear co-variational inequalities in Banach spaces, Funct. Diff. Equat., 14 (2007), 299-313.   Google Scholar

[17]

B. S. Lee and Sa lahuddin, Fuzzy general nonlinear ordered random variational inequalities in ordered Banach spaces, East Asian Math. J., 32 (2016), 685-700.   Google Scholar

[18]

B. S. LeeM. F. Khan and Sa lahuddin, Generalized nonlinear quasi-variational inclusions in Banach spaces, Comput. Math. Appl., 56 (2008), 1414-1422.  doi: 10.1016/j.camwa.2007.11.053.  Google Scholar

[19]

B. S. LeeM. F. Khan and Sa lahuddin, Hybrid-type set-valued variational-like inequalities in Reflexive Banach spaces, J. Appl. Math. Inform., 27 (2009), 1371-1379.   Google Scholar

[20]

H. G. Li, L. P. Li, J. M. Zheng and M. M. Jin, Sensitivity analysis for generalized set-valued parametric ordered variational inclusion with $(\alpha, \lambda)$-nodsm mappings in ordered Banach spaces, Fixed Point Theory Appl., 2014 (2014), 122. doi: 10.1186/1687-1812-2014-122.  Google Scholar

[21]

H. G. Li, D. Qui and Y. Zou, Characterization of weak-anodd set-valued mappings with applications to approximate solution of gnmoqv inclusions involving $\oplus$ operator in ordered Banach spaces, Fixed Point Theory Appl., 2013 (2013), 241. doi: 10.1186/1687-1812-2013-241.  Google Scholar

[22]

H. G. Li, L. P. Li and M. M. Jin, A class of nonlinear mixed ordered inclusion problems for oredered $(\alpha_a, \lambda)$-ANODM set-valued mappings with strong comparison mapping, Fixed Point Theory Appl., 2014 (2014), 79. doi: 10.1186/1687-1812-2014-79.  Google Scholar

[23]

H. G. Li, A nonlinear inclusion problem involving $(\alpha, \lambda)$-NODM set-valued mappings in ordered Hilbert space, Appl. Math. Lett., 25 (2012), 1384-1388.  doi: 10.1016/j.aml.2011.12.007.  Google Scholar

[24]

H. G. Li, Approximation solution for general nonlinear ordered variational inequalities and ordered equations in ordered Banach space, Nonlinear Anal. Forum, 13 (2008), 205-214.   Google Scholar

[25]

H. G. Li, D. Qiu and M. M. Jin, GNM ordered variational inequality system with ordered Lipschitz continuous mappings in an ordered Banach space, J. Inequal. Appl., 2013 (2013), 514. doi: 10.1186/1029-242X-2013-514.  Google Scholar

[26]

H. G. Li, X. B. Pan, Z. Y. Deng and C. Y. Wang, Solving GNOVI frameworks involving $(\gamma_g, \lambda)$-weak-GRD set-valued mappings in positive Hilbert spaces, Fixed Point Theory Appl., 2014 (2014), 146. doi: 10.1186/1687-1812-2014-146.  Google Scholar

[27]

H. H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin, 1994.  Google Scholar

[28]

Sa lahuddin, Regularized equilibrium problems in Banach spaces, Korean J. Math., 24 (2016), 51-63.  doi: 10.11568/kjm.2016.24.1.51.  Google Scholar

[29]

Sa lahuddin, Solvability for a system of generalized nonlinear ordered variational inclusions in ordered Banach spaces, Korean J. Math., 25 (2017), 359-377.   Google Scholar

[30]

Sa lahuddin and S. S. Irfan, Proximal methods for quasi-variational inequalities, Math. Computat. Appl., 9 (2004), 165-172.  doi: 10.3390/mca9020165.  Google Scholar

[31]

A. H. SiddiqiM. K. Ahmad and Sa lahuddin, Existence results for generalized nonlinear variational inclusions, Appl. Math. Lett., 18 (2005), 859-864.  doi: 10.1016/j.aml.2004.08.015.  Google Scholar

[32]

Y. K. Tang, S. S. Chang and Salahuddin, A system of nonlinear set valued variational inclusions, SpringerPlus, 3 (2014), 318. Google Scholar

[33]

R. U. Verma, Projection methods, algorithms and a new system of nonlinear variational inequalities, Comput. Math. Appl., 41 (2001), 1025-1031.  doi: 10.1016/S0898-1221(00)00336-9.  Google Scholar

[34]

R. U. VermaM. F. Khan and Sa lahuddin, Fuzzy generalized complementarity problems in Banach spaces, PanAmer. Math. J., 17 (2007), 71-80.   Google Scholar

[35]

R. U. Verma and Sa lahuddin, Extended systems of nonlinear vector quasi variational inclusions and extended systems of nonlinear vector quasi optimization problems in locally FC-spaces, Commun. Appl. Nonlinear Anal., 23 (2016), 71-88.   Google Scholar

[1]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[2]

Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014

[3]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[4]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[5]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[6]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[7]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[8]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[9]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[10]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[11]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[12]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[13]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[14]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[15]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[16]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[17]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[18]

Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056

[19]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[20]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

 Impact Factor: 

Metrics

  • PDF downloads (82)
  • HTML views (443)
  • Cited by (0)

Other articles
by authors

[Back to Top]