March  2020, 10(1): 13-21. doi: 10.3934/naco.2019029

Numerical comparisons of smoothing functions for optimal correction of an infeasible system of absolute value equations

Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran

* Corresponding author: Saeed Ketabchi

Received  June 2018 Revised  April 2019 Published  May 2019

Optimal correction of an infeasible system of absolute value equations (AVEs), leads into a nonconvex and nonsmooth fractional problem. Using Dinkelbach's approach, this problem can be reformulated to form a single variable equation. In this paper, first, we have smoothed the equation by considering four important and famous smoothing functions (see[2,23]) and thus, to solve it, a smoothing-type algorithm based on the Difference of Convex (DC) algorithm-Newtown methods is proposed. Finally, the randomly generated AVEs were compared to find the best smoothing function.

Citation: Fakhrodin Hashemi, Saeed Ketabchi. Numerical comparisons of smoothing functions for optimal correction of an infeasible system of absolute value equations. Numerical Algebra, Control & Optimization, 2020, 10 (1) : 13-21. doi: 10.3934/naco.2019029
References:
[1]

F. J. A. ArtachoR. M. Fleming and P. T. Vuong, Accelerating the dc algorithm for smooth functions, Mathematical Programming, 169 (2018), 95-118.  doi: 10.1007/s10107-017-1180-1.  Google Scholar

[2]

X. Chen, Smoothing methods for nonsmooth, nonconvex minimization, Mathematical Programming, 134 (2012), 71-99.  doi: 10.1007/s10107-012-0569-0.  Google Scholar

[3]

F. H. Clarke, Optimization and Nonsmooth Analysis, Vol. 5, SIAM, 1990. doi: 10.1137/1.9781611971309.  Google Scholar

[4]

W. Dinkelbach, On nonlinear fractional programming, Management Science, 13 (1967), 492-498.  doi: 10.1287/mnsc.13.7.492.  Google Scholar

[5]

E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming, 91 (2002), 201-213.  doi: 10.1007/s101070100263.  Google Scholar

[6]

S.-L. Hu and Z.-H. Huang, A note on absolute value equations, Optimization Letters, 4 (2010), 417-424.  doi: 10.1007/s11590-009-0169-y.  Google Scholar

[7]

X. Jiang and Y. Zhang, A smoothing-type algorithm for absolute value equations, Journal of Industrial and Management Optimization, 9 (2013), 789-798.  doi: 10.3934/jimo.2013.9.789.  Google Scholar

[8]

S. Ketabchi and H. Moosaei, An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side, Computers and Mathematics with Applications, 64 (2012), 1882-1885.  doi: 10.1016/j.camwa.2012.03.015.  Google Scholar

[9]

S. Ketabchi and H. Moosaei, Minimum norm solution to the absolute value equation in the convex case, Journal of Optimization Theory and Applications, 154 (2012), 1080-1087.  doi: 10.1007/s10957-012-0044-3.  Google Scholar

[10]

S. Ketabchi and H. Moosaei, Optimal error correction and methods of feasible directions, Journal of Optimization Theory and Applications, 154 (2012), 209-216.  doi: 10.1007/s10957-012-0009-6.  Google Scholar

[11]

S. KetabchiH. Moosaei and S. Fallahi, Optimal error correction of the absolute value equation using a genetic algorithm, Mathematical and Computer Modelling, 57 (2013), 2339-2342.   Google Scholar

[12]

O. L. Mangasarian, Absolute value equation solution via concave minimization, Optimization Letters, 1 (2007), 3-8.  doi: 10.1007/s11590-006-0005-6.  Google Scholar

[13]

O. L. Mangasarian, Absolute value programming, Computational Optimization and Applications, 36 (2007), 43-53.  doi: 10.1007/s10589-006-0395-5.  Google Scholar

[14]

O. L. Mangasarian, A generalized newton method for absolute value equations, Optimization Letters, 3 (2009), 101-108.  doi: 10.1007/s11590-008-0094-5.  Google Scholar

[15]

O. L. Mangasarian, Primal-dual bilinear programming solution of the absolute value equation, Optimization Letters, 6 (2012), 1527-1533.  doi: 10.1007/s11590-011-0347-6.  Google Scholar

[16]

O. L. Mangasarian, Absolute value equation solution via dual complementarity, Optimization Letters, 7 (2013), 625-630.  doi: 10.1007/s11590-012-0469-5.  Google Scholar

[17]

O. L. Mangasarian and R. R. Meyer, Absolute value equations, Linear Algebra and Its Applications, 419 (2006), 359-367.  doi: 10.1016/j.laa.2006.05.004.  Google Scholar

[18]

H. MoosaeiS. Ketabchi and P. M. Pardalos, Tikhonov regularization for infeasible absolute value equations, Optimization, 65 (2016), 1531-1537.  doi: 10.1080/02331934.2016.1154963.  Google Scholar

[19]

A. Nekvinda and L. Zajíček, A simple proof of the rademacher theorem, Časopis pro pěstování matematiky, 113 (1988), 337–341.  Google Scholar

[20]

J. Nocedal and S. J. Wright, Numerical Optimization, 2nd edition, Springer, 2006.  Google Scholar

[21]

O. Prokopyev, On equivalent reformulations for absolute value equations, Computational Optimization and Applications, 44 (2009), 363-372.  doi: 10.1007/s10589-007-9158-1.  Google Scholar

[22]

J. Rohn, A theorem of the alternatives for the equation A|x|+ B|x|=b, Linear and Multilinear Algebra, 52 (2004), 421-426.  doi: 10.1080/0308108042000220686.  Google Scholar

[23]

B. SaheyaC.-H. Yu and J.-S. Chen, Numerical comparisons based on four smoothing functions for absolute value equation, Journal of Applied Mathematics and Computing, 56 (2018), 131-149.  doi: 10.1007/s12190-016-1065-0.  Google Scholar

[24]

P. D. Tao and L. T. H. An, Convex analysis approach to dc programming: Theory, algorithms and applications, Acta Mathematica Vietnamica, 22 (1997), 289-355.   Google Scholar

show all references

References:
[1]

F. J. A. ArtachoR. M. Fleming and P. T. Vuong, Accelerating the dc algorithm for smooth functions, Mathematical Programming, 169 (2018), 95-118.  doi: 10.1007/s10107-017-1180-1.  Google Scholar

[2]

X. Chen, Smoothing methods for nonsmooth, nonconvex minimization, Mathematical Programming, 134 (2012), 71-99.  doi: 10.1007/s10107-012-0569-0.  Google Scholar

[3]

F. H. Clarke, Optimization and Nonsmooth Analysis, Vol. 5, SIAM, 1990. doi: 10.1137/1.9781611971309.  Google Scholar

[4]

W. Dinkelbach, On nonlinear fractional programming, Management Science, 13 (1967), 492-498.  doi: 10.1287/mnsc.13.7.492.  Google Scholar

[5]

E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming, 91 (2002), 201-213.  doi: 10.1007/s101070100263.  Google Scholar

[6]

S.-L. Hu and Z.-H. Huang, A note on absolute value equations, Optimization Letters, 4 (2010), 417-424.  doi: 10.1007/s11590-009-0169-y.  Google Scholar

[7]

X. Jiang and Y. Zhang, A smoothing-type algorithm for absolute value equations, Journal of Industrial and Management Optimization, 9 (2013), 789-798.  doi: 10.3934/jimo.2013.9.789.  Google Scholar

[8]

S. Ketabchi and H. Moosaei, An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side, Computers and Mathematics with Applications, 64 (2012), 1882-1885.  doi: 10.1016/j.camwa.2012.03.015.  Google Scholar

[9]

S. Ketabchi and H. Moosaei, Minimum norm solution to the absolute value equation in the convex case, Journal of Optimization Theory and Applications, 154 (2012), 1080-1087.  doi: 10.1007/s10957-012-0044-3.  Google Scholar

[10]

S. Ketabchi and H. Moosaei, Optimal error correction and methods of feasible directions, Journal of Optimization Theory and Applications, 154 (2012), 209-216.  doi: 10.1007/s10957-012-0009-6.  Google Scholar

[11]

S. KetabchiH. Moosaei and S. Fallahi, Optimal error correction of the absolute value equation using a genetic algorithm, Mathematical and Computer Modelling, 57 (2013), 2339-2342.   Google Scholar

[12]

O. L. Mangasarian, Absolute value equation solution via concave minimization, Optimization Letters, 1 (2007), 3-8.  doi: 10.1007/s11590-006-0005-6.  Google Scholar

[13]

O. L. Mangasarian, Absolute value programming, Computational Optimization and Applications, 36 (2007), 43-53.  doi: 10.1007/s10589-006-0395-5.  Google Scholar

[14]

O. L. Mangasarian, A generalized newton method for absolute value equations, Optimization Letters, 3 (2009), 101-108.  doi: 10.1007/s11590-008-0094-5.  Google Scholar

[15]

O. L. Mangasarian, Primal-dual bilinear programming solution of the absolute value equation, Optimization Letters, 6 (2012), 1527-1533.  doi: 10.1007/s11590-011-0347-6.  Google Scholar

[16]

O. L. Mangasarian, Absolute value equation solution via dual complementarity, Optimization Letters, 7 (2013), 625-630.  doi: 10.1007/s11590-012-0469-5.  Google Scholar

[17]

O. L. Mangasarian and R. R. Meyer, Absolute value equations, Linear Algebra and Its Applications, 419 (2006), 359-367.  doi: 10.1016/j.laa.2006.05.004.  Google Scholar

[18]

H. MoosaeiS. Ketabchi and P. M. Pardalos, Tikhonov regularization for infeasible absolute value equations, Optimization, 65 (2016), 1531-1537.  doi: 10.1080/02331934.2016.1154963.  Google Scholar

[19]

A. Nekvinda and L. Zajíček, A simple proof of the rademacher theorem, Časopis pro pěstování matematiky, 113 (1988), 337–341.  Google Scholar

[20]

J. Nocedal and S. J. Wright, Numerical Optimization, 2nd edition, Springer, 2006.  Google Scholar

[21]

O. Prokopyev, On equivalent reformulations for absolute value equations, Computational Optimization and Applications, 44 (2009), 363-372.  doi: 10.1007/s10589-007-9158-1.  Google Scholar

[22]

J. Rohn, A theorem of the alternatives for the equation A|x|+ B|x|=b, Linear and Multilinear Algebra, 52 (2004), 421-426.  doi: 10.1080/0308108042000220686.  Google Scholar

[23]

B. SaheyaC.-H. Yu and J.-S. Chen, Numerical comparisons based on four smoothing functions for absolute value equation, Journal of Applied Mathematics and Computing, 56 (2018), 131-149.  doi: 10.1007/s12190-016-1065-0.  Google Scholar

[24]

P. D. Tao and L. T. H. An, Convex analysis approach to dc programming: Theory, algorithms and applications, Acta Mathematica Vietnamica, 22 (1997), 289-355.   Google Scholar

Figure 1.  Performance profile of computing time of Algorithm 2 for the example 1
Figure 2.  Performance profile of computing time of Algorithm 2 for the example 2
Table 1.  Numerical results for Example 1
$ \phi_1 $ $ \phi_2 $ $ \phi_3 $ $ \phi_4 $
$ n $ $ Me $ $ Merror $ $ Mtime $ $ Me $ $ Merror $ $ Mtime $ $ Me $ $ Merror $ $ Mtime $ $ Me $ $ Merror $ $ Mtime $
100 8.27e-17 5.52e-11 0.04 9.84e-17 1.20e-10 0.03 8.29e-17 1.16e-10 0.04 7.88e-17 1.95e-11 0.01
500 8.42e-17 1.21e-10 1.01 8.32e-17 3.04e-10 0.83 1.03e-16 3.52e-10 0.98 8.01e-17 1.35e-10 0.38
1000 8.25e-17 1.41e-10 5.37 9.34e-17 6.02e-10 4.30 1.05e-16 4.17e-10 4.83 8.78e-17 9.15e-11 2.13
1500 9.36e-17 2.01e-10 14.07 7.98e-17 7.67e-10 11.82 1.00e-16 3.98e-10 12.13 8.80e-17 2.24e-11 6.06
2000 8.99e-17 2.68e-10 30.14 9.17e-17 4.94e-10 23.72 9.95e-17 4.78e-10 26.56 9.30e-17 6.71e-11 11.48
2500 9.42e-17 3.10e-10 48.76 7.83e-17 5.78e-10 37.08 9.00e-17 7.10e-10 46.51 9.65e-17 1.18e-10 19.34
3000 8.84e-17 3.79e-10 85.25 9.87e-17 6.94e-10 66.18 8.06e-17 6.69e-10 78.62 9.62e-17 2.07e-10 35.11
3500 8.44e-17 4.18e-10 122.58 9.77e-17 8.11e-10 98.50 9.37e-17 7.81e-10 117.32 9.43e-17 2.82e-11 52.73
4000 8.89e-17 4.67e-10 162.58 9.82e-17 9.08e-10 134.06 9.35e-17 8.94e-10 158.81 8.23e-17 4.70e-11 73.29
4500 1.01e-16 5.23e-10 245.94 9.12e-17 9.87e-10 189.79 9.14e-17 1.02e-09 242.38 8.81e-17 6.53e-11 105.15
5000 9.17e-17 5.58e-10 289.93 8.92e-17 1.09e-09 241.79 9.31e-17 1.09e-09 288.33 9.07e-17 8.83e-11 122.53
$ \phi_1 $ $ \phi_2 $ $ \phi_3 $ $ \phi_4 $
$ n $ $ Me $ $ Merror $ $ Mtime $ $ Me $ $ Merror $ $ Mtime $ $ Me $ $ Merror $ $ Mtime $ $ Me $ $ Merror $ $ Mtime $
100 8.27e-17 5.52e-11 0.04 9.84e-17 1.20e-10 0.03 8.29e-17 1.16e-10 0.04 7.88e-17 1.95e-11 0.01
500 8.42e-17 1.21e-10 1.01 8.32e-17 3.04e-10 0.83 1.03e-16 3.52e-10 0.98 8.01e-17 1.35e-10 0.38
1000 8.25e-17 1.41e-10 5.37 9.34e-17 6.02e-10 4.30 1.05e-16 4.17e-10 4.83 8.78e-17 9.15e-11 2.13
1500 9.36e-17 2.01e-10 14.07 7.98e-17 7.67e-10 11.82 1.00e-16 3.98e-10 12.13 8.80e-17 2.24e-11 6.06
2000 8.99e-17 2.68e-10 30.14 9.17e-17 4.94e-10 23.72 9.95e-17 4.78e-10 26.56 9.30e-17 6.71e-11 11.48
2500 9.42e-17 3.10e-10 48.76 7.83e-17 5.78e-10 37.08 9.00e-17 7.10e-10 46.51 9.65e-17 1.18e-10 19.34
3000 8.84e-17 3.79e-10 85.25 9.87e-17 6.94e-10 66.18 8.06e-17 6.69e-10 78.62 9.62e-17 2.07e-10 35.11
3500 8.44e-17 4.18e-10 122.58 9.77e-17 8.11e-10 98.50 9.37e-17 7.81e-10 117.32 9.43e-17 2.82e-11 52.73
4000 8.89e-17 4.67e-10 162.58 9.82e-17 9.08e-10 134.06 9.35e-17 8.94e-10 158.81 8.23e-17 4.70e-11 73.29
4500 1.01e-16 5.23e-10 245.94 9.12e-17 9.87e-10 189.79 9.14e-17 1.02e-09 242.38 8.81e-17 6.53e-11 105.15
5000 9.17e-17 5.58e-10 289.93 8.92e-17 1.09e-09 241.79 9.31e-17 1.09e-09 288.33 9.07e-17 8.83e-11 122.53
Table 2.  Numerical results for Example 2
$ \phi_1 $ $ \phi_2 $ $ \phi_3 $ $ \phi_4 $
$ n $ $ Me $ $ Merror $ $ Mtime $ $ Me $ $ Merror $ $ Mtime $ $ Me $ $ Merror $ $ Mtime $ $ Me $ $ Merror $ $ Mtime $
100 8.85e-17 2.71e-11 0.03 1.04e-16 2.09e-11 0.03 9.03e-17 5.04e-11 0.03 9.36e-17 3.17e-11 0.02
500 8.30e-17 2.55e-11 1.06 8.38e-17 1.51e-11 1.01 8.70e-17 9.62e-11 1.05 8.91e-17 3.69e-10 0.48
1000 9.17e-17 1.63e-11 6.77 8.96e-17 5.38e-12 6.42 8.11e-17 6.93e-11 6.71 8.58e-17 2.82e-10 2.63
1500 8.66e-17 1.75e-11 18.49 8.76e-17 7.15e-12 18.40 8.94e-17 3.95e-11 18.49 8.76e-17 7.39e-11 7.69
2000 8.91e-17 1.52e-11 34.22 8.68e-17 6.17e-12 32.40 9.38e-17 4.12e-11 33.71 8.62e-17 2.07e-10 17.75
2500 9.45e-17 2.82e-11 63.48 9.18e-17 3.01e-12 60.78 7.82e-17 5.16e-11 62.92 8.66e-17 3.56e-10 33.42
3000 8.06e-17 1.70e-11 113.18 8.08e-17 8.29e-12 100.24 9.50e-17 3.59e-11 112.44 9.35e-17 6.29e-10 52.83
3500 8.56e-17 6.96e-12 169.34 1.01e-16 3.62e-12 162.04 1.02e-16 2.63e-11 162.79 7.56e-17 8.45e-11 81.62
4000 8.21e-17 1.34e-11 245.96 9.40e-17 3.91e-12 244.70 8.69e-17 3.41e-11 245.37 9.57e-17 1.38e-10 126.02
4500 7.84e-17 1.70e-11 351.13 9.31e-17 4.52e-12 313.81 9.19e-17 4.93e-11 328.67 8.42e-17 2.02e-10 175.69
5000 1.11e-16 3.03e-11 476.20 8.51e-17 4.20e-12 437.35 1.03e-16 5.77e-11 444.11 6.94e-17 2.67e-10 232.96
$ \phi_1 $ $ \phi_2 $ $ \phi_3 $ $ \phi_4 $
$ n $ $ Me $ $ Merror $ $ Mtime $ $ Me $ $ Merror $ $ Mtime $ $ Me $ $ Merror $ $ Mtime $ $ Me $ $ Merror $ $ Mtime $
100 8.85e-17 2.71e-11 0.03 1.04e-16 2.09e-11 0.03 9.03e-17 5.04e-11 0.03 9.36e-17 3.17e-11 0.02
500 8.30e-17 2.55e-11 1.06 8.38e-17 1.51e-11 1.01 8.70e-17 9.62e-11 1.05 8.91e-17 3.69e-10 0.48
1000 9.17e-17 1.63e-11 6.77 8.96e-17 5.38e-12 6.42 8.11e-17 6.93e-11 6.71 8.58e-17 2.82e-10 2.63
1500 8.66e-17 1.75e-11 18.49 8.76e-17 7.15e-12 18.40 8.94e-17 3.95e-11 18.49 8.76e-17 7.39e-11 7.69
2000 8.91e-17 1.52e-11 34.22 8.68e-17 6.17e-12 32.40 9.38e-17 4.12e-11 33.71 8.62e-17 2.07e-10 17.75
2500 9.45e-17 2.82e-11 63.48 9.18e-17 3.01e-12 60.78 7.82e-17 5.16e-11 62.92 8.66e-17 3.56e-10 33.42
3000 8.06e-17 1.70e-11 113.18 8.08e-17 8.29e-12 100.24 9.50e-17 3.59e-11 112.44 9.35e-17 6.29e-10 52.83
3500 8.56e-17 6.96e-12 169.34 1.01e-16 3.62e-12 162.04 1.02e-16 2.63e-11 162.79 7.56e-17 8.45e-11 81.62
4000 8.21e-17 1.34e-11 245.96 9.40e-17 3.91e-12 244.70 8.69e-17 3.41e-11 245.37 9.57e-17 1.38e-10 126.02
4500 7.84e-17 1.70e-11 351.13 9.31e-17 4.52e-12 313.81 9.19e-17 4.93e-11 328.67 8.42e-17 2.02e-10 175.69
5000 1.11e-16 3.03e-11 476.20 8.51e-17 4.20e-12 437.35 1.03e-16 5.77e-11 444.11 6.94e-17 2.67e-10 232.96
[1]

Xiaoqin Jiang, Ying Zhang. A smoothing-type algorithm for absolute value equations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 789-798. doi: 10.3934/jimo.2013.9.789

[2]

Carlo Sinestrari. Semiconcavity of the value function for exit time problems with nonsmooth target. Communications on Pure & Applied Analysis, 2004, 3 (4) : 757-774. doi: 10.3934/cpaa.2004.3.757

[3]

Sophie Guillaume. Evolution equations governed by the subdifferential of a convex composite function in finite dimensional spaces. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 23-52. doi: 10.3934/dcds.1996.2.23

[4]

Sanming Liu, Zhijie Wang, Chongyang Liu. Proximal iterative Gaussian smoothing algorithm for a class of nonsmooth convex minimization problems. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 79-89. doi: 10.3934/naco.2015.5.79

[5]

Qingsong Duan, Mengwei Xu, Yue Lu, Liwei Zhang. A smoothing augmented Lagrangian method for nonconvex, nonsmooth constrained programs and its applications to bilevel problems. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1241-1261. doi: 10.3934/jimo.2018094

[6]

Behrouz Kheirfam. A full Nesterov-Todd step infeasible interior-point algorithm for symmetric optimization based on a specific kernel function. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 601-614. doi: 10.3934/naco.2013.3.601

[7]

Ugo Bessi. The stochastic value function in metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1819-1839. doi: 10.3934/dcds.2017076

[8]

Piermarco Cannarsa, Peter R. Wolenski. Semiconcavity of the value function for a class of differential inclusions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 453-466. doi: 10.3934/dcds.2011.29.453

[9]

Juan Li, Wenqiang Li. Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs. Mathematical Control & Related Fields, 2015, 5 (3) : 501-516. doi: 10.3934/mcrf.2015.5.501

[10]

Ariela Briani, Hasnaa Zidani. Characterization of the value function of final state constrained control problems with BV trajectories. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1567-1587. doi: 10.3934/cpaa.2011.10.1567

[11]

Nguyen Huy Chieu, Jen-Chih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial & Management Optimization, 2010, 6 (2) : 401-410. doi: 10.3934/jimo.2010.6.401

[12]

Yang Li, Liwei Zhang. A nonlinear Lagrangian method based on Log-Sigmoid function for nonconvex semidefinite programming. Journal of Industrial & Management Optimization, 2009, 5 (3) : 651-669. doi: 10.3934/jimo.2009.5.651

[13]

Zhiyou Wu, Fusheng Bai, Guoquan Li, Yongjian Yang. A new auxiliary function method for systems of nonlinear equations. Journal of Industrial & Management Optimization, 2015, 11 (2) : 345-364. doi: 10.3934/jimo.2015.11.345

[14]

Na Zhao, Zheng-Hai Huang. A nonmonotone smoothing Newton algorithm for solving box constrained variational inequalities with a $P_0$ function. Journal of Industrial & Management Optimization, 2011, 7 (2) : 467-482. doi: 10.3934/jimo.2011.7.467

[15]

Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial & Management Optimization, 2005, 1 (4) : 533-547. doi: 10.3934/jimo.2005.1.533

[16]

Feng Ma, Jiansheng Shu, Yaxiong Li, Jian Wu. The dual step size of the alternating direction method can be larger than 1.618 when one function is strongly convex. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2020016

[17]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

[18]

Olga A. Brezhneva, Alexey A. Tret’yakov, Jerrold E. Marsden. Higher--order implicit function theorems and degenerate nonlinear boundary-value problems. Communications on Pure & Applied Analysis, 2008, 7 (2) : 293-315. doi: 10.3934/cpaa.2008.7.293

[19]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[20]

Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549

 Impact Factor: 

Metrics

  • PDF downloads (171)
  • HTML views (449)
  • Cited by (0)

Other articles
by authors

[Back to Top]