[1]
|
F. J. A. Artacho, R. M. Fleming and P. T. Vuong, Accelerating the dc algorithm for smooth functions, Mathematical Programming, 169 (2018), 95-118.
doi: 10.1007/s10107-017-1180-1.
|
[2]
|
X. Chen, Smoothing methods for nonsmooth, nonconvex minimization, Mathematical Programming, 134 (2012), 71-99.
doi: 10.1007/s10107-012-0569-0.
|
[3]
|
F. H. Clarke, Optimization and Nonsmooth Analysis, Vol. 5, SIAM, 1990.
doi: 10.1137/1.9781611971309.
|
[4]
|
W. Dinkelbach, On nonlinear fractional programming, Management Science, 13 (1967), 492-498.
doi: 10.1287/mnsc.13.7.492.
|
[5]
|
E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming, 91 (2002), 201-213.
doi: 10.1007/s101070100263.
|
[6]
|
S.-L. Hu and Z.-H. Huang, A note on absolute value equations, Optimization Letters, 4 (2010), 417-424.
doi: 10.1007/s11590-009-0169-y.
|
[7]
|
X. Jiang and Y. Zhang, A smoothing-type algorithm for absolute value equations, Journal of Industrial and Management Optimization, 9 (2013), 789-798.
doi: 10.3934/jimo.2013.9.789.
|
[8]
|
S. Ketabchi and H. Moosaei, An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side, Computers and Mathematics with Applications, 64 (2012), 1882-1885.
doi: 10.1016/j.camwa.2012.03.015.
|
[9]
|
S. Ketabchi and H. Moosaei, Minimum norm solution to the absolute value equation in the convex case, Journal of Optimization Theory and Applications, 154 (2012), 1080-1087.
doi: 10.1007/s10957-012-0044-3.
|
[10]
|
S. Ketabchi and H. Moosaei, Optimal error correction and methods of feasible directions, Journal of Optimization Theory and Applications, 154 (2012), 209-216.
doi: 10.1007/s10957-012-0009-6.
|
[11]
|
S. Ketabchi, H. Moosaei and S. Fallahi, Optimal error correction of the absolute value equation using a genetic algorithm, Mathematical and Computer Modelling, 57 (2013), 2339-2342.
|
[12]
|
O. L. Mangasarian, Absolute value equation solution via concave minimization, Optimization Letters, 1 (2007), 3-8.
doi: 10.1007/s11590-006-0005-6.
|
[13]
|
O. L. Mangasarian, Absolute value programming, Computational Optimization and Applications, 36 (2007), 43-53.
doi: 10.1007/s10589-006-0395-5.
|
[14]
|
O. L. Mangasarian, A generalized newton method for absolute value equations, Optimization Letters, 3 (2009), 101-108.
doi: 10.1007/s11590-008-0094-5.
|
[15]
|
O. L. Mangasarian, Primal-dual bilinear programming solution of the absolute value equation, Optimization Letters, 6 (2012), 1527-1533.
doi: 10.1007/s11590-011-0347-6.
|
[16]
|
O. L. Mangasarian, Absolute value equation solution via dual complementarity, Optimization Letters, 7 (2013), 625-630.
doi: 10.1007/s11590-012-0469-5.
|
[17]
|
O. L. Mangasarian and R. R. Meyer, Absolute value equations, Linear Algebra and Its Applications, 419 (2006), 359-367.
doi: 10.1016/j.laa.2006.05.004.
|
[18]
|
H. Moosaei, S. Ketabchi and P. M. Pardalos, Tikhonov regularization for infeasible absolute value equations, Optimization, 65 (2016), 1531-1537.
doi: 10.1080/02331934.2016.1154963.
|
[19]
|
A. Nekvinda and L. Zajíček, A simple proof of the rademacher theorem, Časopis pro pěstování matematiky, 113 (1988), 337–341.
|
[20]
|
J. Nocedal and S. J. Wright, Numerical Optimization, 2nd edition, Springer, 2006.
|
[21]
|
O. Prokopyev, On equivalent reformulations for absolute value equations, Computational Optimization and Applications, 44 (2009), 363-372.
doi: 10.1007/s10589-007-9158-1.
|
[22]
|
J. Rohn, A theorem of the alternatives for the equation A|x|+ B|x|=b, Linear and Multilinear Algebra, 52 (2004), 421-426.
doi: 10.1080/0308108042000220686.
|
[23]
|
B. Saheya, C.-H. Yu and J.-S. Chen, Numerical comparisons based on four smoothing functions for absolute value equation, Journal of Applied Mathematics and Computing, 56 (2018), 131-149.
doi: 10.1007/s12190-016-1065-0.
|
[24]
|
P. D. Tao and L. T. H. An, Convex analysis approach to dc programming: Theory, algorithms and applications, Acta Mathematica Vietnamica, 22 (1997), 289-355.
|