# American Institute of Mathematical Sciences

March  2020, 10(1): 39-41. doi: 10.3934/naco.2019031

## Initial guess sensitivity in computational optimal control problems

 1 Applied Mathematical Analysis, 24748 SE Mirromont Pl., Issaquah, WA 98027, USA 2 Department of Mathematics, North Carolina State University, Raleigh, NC, 27695-8205, USA

* Corresponding author: Stephen L Campbell

Received  July 2018 Revised  April 2019 Published  May 2019

An optimal control problem is presented that exhibited unexpected initial guess dependence when being solved with direct transcription methods. This note presents that example and the cautionary tale it provides.

Citation: John T. Betts, Stephen L. Campbell, Claire Digirolamo. Initial guess sensitivity in computational optimal control problems. Numerical Algebra, Control & Optimization, 2020, 10 (1) : 39-41. doi: 10.3934/naco.2019031
##### References:

show all references

##### References:
Graphs of computed optimal control $w$ for Example (2) with DT approach and $M = 2, T = 1.$
Endpoints for Initial $w$ guesses $w_i$ for Example 2
 $i$ $w_0$ $w_f$ 1 1 0 2 -1 -1 3 1 -1 4 0 1
 $i$ $w_0$ $w_f$ 1 1 0 2 -1 -1 3 1 -1 4 0 1
Adjusted Values of $\eta(T)$ for Example (2) using DT and $M = 2$, $T = 1$ and 3 iterations for different values of $\gamma^2$ and $w_i$
 $\gamma^2$ $w_1$ $w_2$ $w_3$ $w_4$ 4.3 18.0613 5.3457 18.0613 18.0613 4.4 18.0613 5.3457 18.0613 5.3457 4.5 18.0613 18.0613 5.3457 5.3457 4.6 18.0613 18.0613 18.0613 18.0613 4.7 5.3457 5.3457 18.0613 5.3457
 $\gamma^2$ $w_1$ $w_2$ $w_3$ $w_4$ 4.3 18.0613 5.3457 18.0613 18.0613 4.4 18.0613 5.3457 18.0613 5.3457 4.5 18.0613 18.0613 5.3457 5.3457 4.6 18.0613 18.0613 18.0613 18.0613 4.7 5.3457 5.3457 18.0613 5.3457
Rerun of the results reported in Table Table 2. Bold entries have changed from Table 2
 $\gamma^2$ $w_1$ $w_2$ $w_3$ $w_4$ 4.3 18.0613 5.3457 18.0613 18.0613 4.4 18.0613 5.3457 18.0613 5.3457 4.5 18.0613 18.0613 5.3457 5.3457 4.6 5.3457 18.0613 5.3457 18.0613 4.7 5.3457 5.3457 18.0613 5.3457
 $\gamma^2$ $w_1$ $w_2$ $w_3$ $w_4$ 4.3 18.0613 5.3457 18.0613 18.0613 4.4 18.0613 5.3457 18.0613 5.3457 4.5 18.0613 18.0613 5.3457 5.3457 4.6 5.3457 18.0613 5.3457 18.0613 4.7 5.3457 5.3457 18.0613 5.3457
Adjusted Values of $\eta(T)$ for Example (2) using DT and $M = 2$, $T = 1$ and 3 iterations for cost (3)
 $\gamma^2$ $w_1$ $w_2$ $w_3$ $w_4$ 4.3 18.0613 18.0613 5.3457 18.0613 4.4 18.0613 18.0613 5.3457 5.3457 4.5 18.0613 18.0613 5.3457 18.0613 4.6 18.0613 18.0613 5.3457 18.0613 4.7 18.0613 18.0613 5.3457 5.3457
 $\gamma^2$ $w_1$ $w_2$ $w_3$ $w_4$ 4.3 18.0613 18.0613 5.3457 18.0613 4.4 18.0613 18.0613 5.3457 5.3457 4.5 18.0613 18.0613 5.3457 18.0613 4.6 18.0613 18.0613 5.3457 18.0613 4.7 18.0613 18.0613 5.3457 5.3457
 [1] John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020026 [2] Guoqiang Wang, Zhongchen Wu, Zhongtuan Zheng, Xinzhong Cai. Complexity analysis of primal-dual interior-point methods for semidefinite optimization based on a parametric kernel function with a trigonometric barrier term. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 101-113. doi: 10.3934/naco.2015.5.101 [3] Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092 [4] Martin Benning, Elena Celledoni, Matthias J. Ehrhardt, Brynjulf Owren, Carola-Bibiane Schönlieb. Deep learning as optimal control problems: Models and numerical methods. Journal of Computational Dynamics, 2019, 6 (2) : 171-198. doi: 10.3934/jcd.2019009 [5] Xiaowei Pang, Haiming Song, Xiaoshen Wang, Jiachuan Zhang. Efficient numerical methods for elliptic optimal control problems with random coefficient. Electronic Research Archive, 2020, 28 (2) : 1001-1022. doi: 10.3934/era.2020053 [6] Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927 [7] Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 [8] Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025 [9] Minzilia A. Sagadeeva, Sophiya A. Zagrebina, Natalia A. Manakova. Optimal control of solutions of a multipoint initial-final problem for non-autonomous evolutionary Sobolev type equation. Evolution Equations & Control Theory, 2019, 8 (3) : 473-488. doi: 10.3934/eect.2019023 [10] Liming Sun, Li-Zhi Liao. An interior point continuous path-following trajectory for linear programming. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1517-1534. doi: 10.3934/jimo.2018107 [11] Zheng-Hai Huang, Shang-Wen Xu. Convergence properties of a non-interior-point smoothing algorithm for the P*NCP. Journal of Industrial & Management Optimization, 2007, 3 (3) : 569-584. doi: 10.3934/jimo.2007.3.569 [12] Behrouz Kheirfam, Morteza Moslemi. On the extension of an arc-search interior-point algorithm for semidefinite optimization. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 261-275. doi: 10.3934/naco.2018015 [13] Behrouz Kheirfam, Guoqiang Wang. An infeasible full NT-step interior point method for circular optimization. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 171-184. doi: 10.3934/naco.2017011 [14] Markus Haltmeier, Richard Kowar, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations II: Applications. Inverse Problems & Imaging, 2007, 1 (3) : 507-523. doi: 10.3934/ipi.2007.1.507 [15] Shuhong Chen, Zhong Tan. Optimal interior partial regularity for nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 981-993. doi: 10.3934/dcds.2010.27.981 [16] Ming Mei, Yau Shu Wong, Liping Liu. Phase transitions in a coupled viscoelastic system with periodic initial-boundary condition: (II) Convergence. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 839-857. doi: 10.3934/dcdsb.2007.7.839 [17] Yu-Hong Dai, Xin-Wei Liu, Jie Sun. A primal-dual interior-point method capable of rapidly detecting infeasibility for nonlinear programs. Journal of Industrial & Management Optimization, 2020, 16 (2) : 1009-1035. doi: 10.3934/jimo.2018190 [18] Soodabeh Asadi, Hossein Mansouri. A Mehrotra type predictor-corrector interior-point algorithm for linear programming. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 147-156. doi: 10.3934/naco.2019011 [19] Yanqin Bai, Xuerui Gao, Guoqiang Wang. Primal-dual interior-point algorithms for convex quadratic circular cone optimization. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 211-231. doi: 10.3934/naco.2015.5.211 [20] Behrouz Kheirfam. A full Nesterov-Todd step infeasible interior-point algorithm for symmetric optimization based on a specific kernel function. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 601-614. doi: 10.3934/naco.2013.3.601

Impact Factor:

## Tools

Article outline

Figures and Tables