[1]
|
O. Axelsson and A. Kucherov, Real valued iterative methods for solving complex symmetric linear systems, Numer. Linear Algebra Appl., 7 (2000), 197-218.
doi: 10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO;2-S.
|
[2]
|
Z.-Z. Bai, M. Benzi and F. Chen, Modified HSS iteration methods for a class of complex symmetric linear systems, Computing, 87 (2010), 93-111.
doi: 10.1007/s00607-010-0077-0.
|
[3]
|
Z.-Z. Bai, M. Benzi and F. Chen, On preconditioned MHSS iteration methods for complex symmetric linear systems, Numer. Algor., 56 (2011), 297-317.
doi: 10.1007/s11075-010-9441-6.
|
[4]
|
Z.-Z. Bai, Rotated block triangular preconditioning based on PMHSS, Sci. China Math., 56 (2013), 2523-2538.
doi: 10.1007/s11425-013-4695-9.
|
[5]
|
Z.-Z. Bai, G. H. Golub and M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM. J. Matrix Anal. Appl., 24 (2003), 603-626.
doi: 10.1137/S0895479801395458.
|
[6]
|
Z.-Z. Bai, M. Benzi, F. Chen and Z.-Q. Wang, Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems, IMA J. Numer. Anal., 33 (2013), 343-369.
doi: 10.1093/imanum/drs001.
|
[7]
|
Z.-Z. Bai, B. N. Parlett and Z.-Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102 (2005), 1-38.
doi: 10.1007/s00211-005-0643-0.
|
[8]
|
M. Benzi and D. Bertaccini, Block preconditioning of real-valued iterative algorithms for complex linear systems, IMA J. Numer. Anal., 28 (2008), 598-618.
doi: 10.1093/imanum/drm039.
|
[9]
|
M. Benzi and G. Golub, A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26 (2004), 20-41.
doi: 10.1137/S0895479802417106.
|
[10]
|
M. Benzi, G. H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numerica, 14 (2005), 1-137.
doi: 10.1017/S0962492904000212.
|
[11]
|
A. Bunse-Gerstner and R. Stover, On a conjugate gradient-type method for solving complex symmetric linear systems, Linear Algebra Appl., 287 (1999), 105-123.
doi: 10.1016/S0024-3795(98)10091-5.
|
[12]
|
M. Dehghan, M. M. Dehghani and M. Hajarian, A generalized preconditioned MHSS method for a class of complex symmetric linear systems, J. Math. Model. Anal., 18 (2013), 561-576.
doi: 10.3846/13926292.2013.839964.
|
[13]
|
V. Edalatpour, D. Hezari and D. K. Salkuyeh, Two efficient inexact algorithms for a class of large sparse complex linear systems, Mediterr. J. Math., 13 (2016), 2301-2318.
doi: 10.1007/s00009-015-0621-4.
|
[14]
|
G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, MD, 1996.
|
[15]
|
D. Hezari, D. K. Salkuyeh and V. Edalatpour, A new iterative method for solving a class of complex symmetric system of linear equathions, Numer. Algor., 73 (2016), 927-955.
doi: 10.1007/s11075-016-0123-x.
|
[16]
|
D. Hezari, V. Edalatpour and D. K. Salkuyeh, Preconditioned GSOR iterative method for a class of complex symmetric system of linear equations, Numer. Linear Algebera Appl., 22 (2015), 761-776.
doi: 10.1002/nla.1987.
|
[17]
|
Z.-Z. Liang and G.-F. Zhang, On SSOR iteration method for a class of block two-by-wo linear systems, Numer. Algor., 71 (2016), 655-671.
doi: 10.1007/s11075-015-0015-5.
|
[18]
|
D. K. Salkuyeh, D. Hezari and V. Edalatpour, Generalized successive overrelaxation iterative method for a class of complex symmetric linear system of equations, Int. J. Comput. Math., 92 (2015), 802-815.
doi: 10.1080/00207160.2014.912753.
|
[19]
|
D. K. Salkuyeh and T. S. Siahkolaei, Two-parameter TSCSP method for solving complex symmetric system of linear equations, Calcolo, 55 (2018), 8.
doi: 10.1007/s10092-018-0252-9.
|
[20]
|
G.-F. Zhang and Z. Zheng, A parameterized splitting iteration methods for complex symmetric linear systems, Jpn. J. Indust. Appl. Math., 31 (2014), 265-278.
doi: 10.1007/s13160-014-0140-x.
|