• Previous Article
    Unified vector quasiequilibrium problems via improvement sets and nonlinear scalarization with stability analysis
  • NACO Home
  • This Issue
  • Next Article
    Existence and iterative approximation method for solving mixed equilibrium problem under generalized monotonicity in Banach spaces
March  2020, 10(1): 93-106. doi: 10.3934/naco.2019035

Characterization of efficient solutions for a class of PDE-constrained vector control problems

University Politehnica of Bucharest, Faculty of Applied Sciences, Department of Applied Mathematics, 313 Splaiul Independentei, 060042 Bucharest, Romania

Received  October 2018 Revised  March 2019 Published  May 2019

In this paper, we define a V-KT-pseudoinvex multidimensional vector control problem. More precisely, we introduce a new condition on the functionals which are involved in a multidimensional multiobjective (vector) control problem and we prove that a V-KT-pseudoinvex multidimensional vector control problem is characterized so that all Kuhn-Tucker points are efficient solutions. Also, the theoretical results derived in this paper are illustrated with an application.

Citation: Savin Treanţă. Characterization of efficient solutions for a class of PDE-constrained vector control problems. Numerical Algebra, Control & Optimization, 2020, 10 (1) : 93-106. doi: 10.3934/naco.2019035
References:
[1]

V. M. Alekseev, M. V. Tikhomirov and S. V. Fomin, Commande Optimale, Mir, Moscow, 1982.  Google Scholar

[2]

M. Arana-JiménezR. Osuna-GómezA. Rufián-Lizana and G. Ruiz-Garzón, KT-invex control problem, Appl. Math. Comput., 197 (2008), 489-496.  doi: 10.1016/j.amc.2007.07.064.  Google Scholar

[3]

F. Cardin and C. Viterbo, Commuting Hamiltonians and Hamilton-Jacobi multi-time equations, Duke Math. J., 144 (2008), 235-284.  doi: 10.1215/00127094-2008-036.  Google Scholar

[4]

D. A. Deckert and L. Nickel, Consistency of multi-time Dirac equations with general interaction potentials, J. Math. Phys., 57 (2016), 072301. doi: 10.1063/1.4954947.  Google Scholar

[5]

P. A. M. DiracV. A. Fock and B. Podolski, On quantum electrodynamics, Physikalische Zeitschrift der Sowjetunion, 2 (1932), 468-479.   Google Scholar

[6]

A. Friedman, The Cauchy problem in several time variables, Journal of Mathematics and Mechanics (Indiana Univ. Math. J.), 11 (1962), 859-889.   Google Scholar

[7]

S. Keppeler and M. Sieber, Particle creation and annihilation at interior boundaries: One-dimensional models, Preprint, arXiv: 1511.03071. doi: 10.1088/1751-8113/49/12/125204.  Google Scholar

[8]

W. S. Kendall, Contours of Brownian processes with several-dimensional times, Probability Theory and Related Fields, 52 (1980), 267-276.  doi: 10.1007/BF00538891.  Google Scholar

[9]

M. Lienert and L. Nickel, A simple explicitly solvable interacting relativistic $N$-particle model, J. Phys. A: Math. Theor., 48 (2015), 325301. doi: 10.1088/1751-8113/48/32/325301.  Google Scholar

[10]

D. H. Martin, The essence of invexity, J. Optim. Theory Appl., 47 (1985), 65-76.  doi: 10.1007/BF00941316.  Google Scholar

[11]

Şt. Mititelu and S. Treanţă, Efficiency conditions in vector control problems governed by multiple integrals, J. Appl. Math. Comput., 57 (2018), 647-665.  doi: 10.1007/s12190-017-1126-z.  Google Scholar

[12]

B. Mond and M. A. Hanson, Duality for control problems, SIAM J. Control, 6 (1968), 114-120.   Google Scholar

[13]

B. Mond and I. Smart, Duality and sufficiency in control problems with invexity, J. Math. Anal. Appl., 136 (1988), 325-333.  doi: 10.1016/0022-247X(88)90135-7.  Google Scholar

[14]

M. Motta and F. Rampazzo, Nonsmooth multi-time Hamilton-Jacobi systems, Indiana Univ. Math. J., 55 (2006), 1573-1614.  doi: 10.1512/iumj.2006.55.2760.  Google Scholar

[15]

S. Petrat and R. Tumulka, Multi-time wave functions for quantum field theory, Ann. Phys., 345 (2014), 17-54.  doi: 10.1016/j.aop.2014.03.004.  Google Scholar

[16]

V. Preda, On duality and sufficiency in control problems with general invexity, Bull. Math. de la Soc. Sci. Math de Roumanie, 35 (1991), 271-280.   Google Scholar

[17]

V. Prepeliţă, Stability of a class of multidimensional continuous-discrete linear systems, Math. Reports, 9 (2007), 387-398.   Google Scholar

[18]

D. J. Saunders, The Geometry of Jet Bundles, London Math. Soc. Lecture Notes Series, 142 (1989), Cambridge Univ. Press, Cambridge doi: 10.1017/CBO9780511526411.  Google Scholar

[19]

S. Teufel and R. Tumulka, New type of Hamiltonians without ultraviolet divergence for quantum field theories, Preprint, https://arxiv.org/abs/1505.04847v1. Google Scholar

[20]

S. Tomonaga, On a relativistically invariant formulation of the quantum theory of wave fields, Progress of Theoretical Physics, 1 (1946), 27-42.  doi: 10.1080/10724117.1994.11974884.  Google Scholar

[21]

S. Treanţă, PDEs of Hamilton-Pfaff type via multi-time optimization problems, U.P.B. Sci. Bull., Series A: Appl. Math. Phys., 76 (2014), 163-168.   Google Scholar

[22]

S. Treanţă, Optimal control problems on higher order jet bundles, The Intern. Conf. "Differential Geometry - Dynamical Systems", October 10-13, 2013, Bucharest-Romania, Balkan Society of Geometers, Geometry Balkan Press (2014), 181–192.  Google Scholar

[23]

S. Treanţă, Multiobjective fractional variational problem on higher-order jet bundles, Commun. Math. Stat., 4 (2016), 323-340.  doi: 10.1007/s40304-016-0087-0.  Google Scholar

[24]

S. Treanţă, Higher-order Hamilton dynamics and Hamilton-Jacobi divergence PDE, Comput. Math. Appl., 75 (2018), 547-560.  doi: 10.1016/j.camwa.2017.09.033.  Google Scholar

[25]

S. Treanţă and M. Arana-Jiménez, KT-pseudoinvex multidimensional control problem, Optim. Control Appl. Meth., 39 (2018), 1291-1300.  doi: 10.1002/oca.2410.  Google Scholar

[26]

S. Treanţă and M. Arana-Jiménez, On generalized KT-pseudoinvex control problems involving multiple integral functionals, Eur. J. Control, 43 (2018), 39-45.  doi: 10.1016/j.ejcon.2018.05.004.  Google Scholar

[27]

S. Treanţă, On a new class of vector variational control problems, Numer. Func. Anal. Opt., 39 (2018), 1594-1603.  doi: 10.1080/01630563.2018.1488142.  Google Scholar

[28]

C. Udrişte and I. Ţevy, Multitime dynamic programming for multiple integral actions, J. Glob. Optim., 51 (2011), 345-360.  doi: 10.1007/s10898-010-9599-4.  Google Scholar

[29]

G-W. Weber, F. Yilmaz, H.Ö. Bakan and E. Savku, Approximation of Optimal Stochastic Control Problems for Multi-dimensional Stochastic Differential Equations by Using Itô-Taylor Method with Malliavin Calculus, The 9th International Conference on Optimization: Techniques and Applications, Taipei, Taiwan, 2013. Google Scholar

[30]

N. I. Yurchuk, A partially characteristic mixed boundary value problem with Goursat initial conditions for linear equations with two-dimensional time, Diff. Uravn., 5 (1969), 898-910.   Google Scholar

show all references

References:
[1]

V. M. Alekseev, M. V. Tikhomirov and S. V. Fomin, Commande Optimale, Mir, Moscow, 1982.  Google Scholar

[2]

M. Arana-JiménezR. Osuna-GómezA. Rufián-Lizana and G. Ruiz-Garzón, KT-invex control problem, Appl. Math. Comput., 197 (2008), 489-496.  doi: 10.1016/j.amc.2007.07.064.  Google Scholar

[3]

F. Cardin and C. Viterbo, Commuting Hamiltonians and Hamilton-Jacobi multi-time equations, Duke Math. J., 144 (2008), 235-284.  doi: 10.1215/00127094-2008-036.  Google Scholar

[4]

D. A. Deckert and L. Nickel, Consistency of multi-time Dirac equations with general interaction potentials, J. Math. Phys., 57 (2016), 072301. doi: 10.1063/1.4954947.  Google Scholar

[5]

P. A. M. DiracV. A. Fock and B. Podolski, On quantum electrodynamics, Physikalische Zeitschrift der Sowjetunion, 2 (1932), 468-479.   Google Scholar

[6]

A. Friedman, The Cauchy problem in several time variables, Journal of Mathematics and Mechanics (Indiana Univ. Math. J.), 11 (1962), 859-889.   Google Scholar

[7]

S. Keppeler and M. Sieber, Particle creation and annihilation at interior boundaries: One-dimensional models, Preprint, arXiv: 1511.03071. doi: 10.1088/1751-8113/49/12/125204.  Google Scholar

[8]

W. S. Kendall, Contours of Brownian processes with several-dimensional times, Probability Theory and Related Fields, 52 (1980), 267-276.  doi: 10.1007/BF00538891.  Google Scholar

[9]

M. Lienert and L. Nickel, A simple explicitly solvable interacting relativistic $N$-particle model, J. Phys. A: Math. Theor., 48 (2015), 325301. doi: 10.1088/1751-8113/48/32/325301.  Google Scholar

[10]

D. H. Martin, The essence of invexity, J. Optim. Theory Appl., 47 (1985), 65-76.  doi: 10.1007/BF00941316.  Google Scholar

[11]

Şt. Mititelu and S. Treanţă, Efficiency conditions in vector control problems governed by multiple integrals, J. Appl. Math. Comput., 57 (2018), 647-665.  doi: 10.1007/s12190-017-1126-z.  Google Scholar

[12]

B. Mond and M. A. Hanson, Duality for control problems, SIAM J. Control, 6 (1968), 114-120.   Google Scholar

[13]

B. Mond and I. Smart, Duality and sufficiency in control problems with invexity, J. Math. Anal. Appl., 136 (1988), 325-333.  doi: 10.1016/0022-247X(88)90135-7.  Google Scholar

[14]

M. Motta and F. Rampazzo, Nonsmooth multi-time Hamilton-Jacobi systems, Indiana Univ. Math. J., 55 (2006), 1573-1614.  doi: 10.1512/iumj.2006.55.2760.  Google Scholar

[15]

S. Petrat and R. Tumulka, Multi-time wave functions for quantum field theory, Ann. Phys., 345 (2014), 17-54.  doi: 10.1016/j.aop.2014.03.004.  Google Scholar

[16]

V. Preda, On duality and sufficiency in control problems with general invexity, Bull. Math. de la Soc. Sci. Math de Roumanie, 35 (1991), 271-280.   Google Scholar

[17]

V. Prepeliţă, Stability of a class of multidimensional continuous-discrete linear systems, Math. Reports, 9 (2007), 387-398.   Google Scholar

[18]

D. J. Saunders, The Geometry of Jet Bundles, London Math. Soc. Lecture Notes Series, 142 (1989), Cambridge Univ. Press, Cambridge doi: 10.1017/CBO9780511526411.  Google Scholar

[19]

S. Teufel and R. Tumulka, New type of Hamiltonians without ultraviolet divergence for quantum field theories, Preprint, https://arxiv.org/abs/1505.04847v1. Google Scholar

[20]

S. Tomonaga, On a relativistically invariant formulation of the quantum theory of wave fields, Progress of Theoretical Physics, 1 (1946), 27-42.  doi: 10.1080/10724117.1994.11974884.  Google Scholar

[21]

S. Treanţă, PDEs of Hamilton-Pfaff type via multi-time optimization problems, U.P.B. Sci. Bull., Series A: Appl. Math. Phys., 76 (2014), 163-168.   Google Scholar

[22]

S. Treanţă, Optimal control problems on higher order jet bundles, The Intern. Conf. "Differential Geometry - Dynamical Systems", October 10-13, 2013, Bucharest-Romania, Balkan Society of Geometers, Geometry Balkan Press (2014), 181–192.  Google Scholar

[23]

S. Treanţă, Multiobjective fractional variational problem on higher-order jet bundles, Commun. Math. Stat., 4 (2016), 323-340.  doi: 10.1007/s40304-016-0087-0.  Google Scholar

[24]

S. Treanţă, Higher-order Hamilton dynamics and Hamilton-Jacobi divergence PDE, Comput. Math. Appl., 75 (2018), 547-560.  doi: 10.1016/j.camwa.2017.09.033.  Google Scholar

[25]

S. Treanţă and M. Arana-Jiménez, KT-pseudoinvex multidimensional control problem, Optim. Control Appl. Meth., 39 (2018), 1291-1300.  doi: 10.1002/oca.2410.  Google Scholar

[26]

S. Treanţă and M. Arana-Jiménez, On generalized KT-pseudoinvex control problems involving multiple integral functionals, Eur. J. Control, 43 (2018), 39-45.  doi: 10.1016/j.ejcon.2018.05.004.  Google Scholar

[27]

S. Treanţă, On a new class of vector variational control problems, Numer. Func. Anal. Opt., 39 (2018), 1594-1603.  doi: 10.1080/01630563.2018.1488142.  Google Scholar

[28]

C. Udrişte and I. Ţevy, Multitime dynamic programming for multiple integral actions, J. Glob. Optim., 51 (2011), 345-360.  doi: 10.1007/s10898-010-9599-4.  Google Scholar

[29]

G-W. Weber, F. Yilmaz, H.Ö. Bakan and E. Savku, Approximation of Optimal Stochastic Control Problems for Multi-dimensional Stochastic Differential Equations by Using Itô-Taylor Method with Malliavin Calculus, The 9th International Conference on Optimization: Techniques and Applications, Taipei, Taiwan, 2013. Google Scholar

[30]

N. I. Yurchuk, A partially characteristic mixed boundary value problem with Goursat initial conditions for linear equations with two-dimensional time, Diff. Uravn., 5 (1969), 898-910.   Google Scholar

Figure 1.  Graphical illustrations for x(t) and u(t)
[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[3]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[4]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[5]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001

[6]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[7]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[8]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[9]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[10]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[11]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[12]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[13]

Aurelia Dymek. Proximality of multidimensional $ \mathscr{B} $-free systems. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021013

[14]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[15]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[16]

Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[17]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[18]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[19]

Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020128

[20]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

 Impact Factor: 

Metrics

  • PDF downloads (122)
  • HTML views (542)
  • Cited by (3)

Other articles
by authors

[Back to Top]