This paper has two objectives. The first one is to propose a new vector quasiequilibrium problem where the ordering relation is defined via an improvement set $ D $, and its weak version, also their Minty-type dual problems and the corresponding set-valued cases. These models provide unified frameworks to deal with well-known exact and approximate vector quasiequilibrium problems with vector-valued or set-valued mappings. The second one is to study solution stability in the sense of Hölder continuity of the unique solution to parametric unified (resp. weak) vector quasiequilibrium problems, by employing the Gerstewitz scalarization techniques. In particular, we deduce a new stability result for the typical vector optimization problem related with (resp. weak) $ D $-optimality, by considering perturbations of both the objective function and the feasible set.
Citation: |
[1] |
L. Q. Anh and P. Q. Khanh, On the Hölder continuity of solutions to parametric multivalued vector equilibrium problems, J. Math. Anal. Appl., 321 (2006), 308-315.
![]() ![]() |
[2] |
L. Q. Anh and P. Q. Khanh, Uniqueness and Hölder continuity of the solution to multivalued equilibrium problems in metric spaces, J. Global Optim., 37 (2007), 449-465.
![]() ![]() |
[3] |
L. Q. Anh and P. Q. Khanh, Sensitivity analysis for multivalued quasiequilibrium problems in metric spaces: Hölder continuity of solutions, J. Global Optim., 42 (2008), 515-531.
![]() ![]() |
[4] |
L. Q. Anh and P. Q. Khanh, Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems, Numer. Funct. Anal. Optim., 29 (2008), 24-42.
![]() ![]() |
[5] |
Q. H. Ansari and J.-C. Yao (eds.), Recent Developments in Vector Optimization, Springer, Berlin, 2012.
doi: 10.1007/978-3-642-21114-0.![]() ![]() ![]() |
[6] |
M. Bianchi and R. Pini, Sensitivity for parametric vector equilibria, Optimization, 55 (2006), 221-230.
doi: 10.1080/02331930600662732.![]() ![]() ![]() |
[7] |
C. R. Chen, L. L. Li and M. H. Li, Hölder continuity results for nonconvex parametric generalized vector quasiequilibrium problems via nonlinear scalarizing functions, Optimization, 65 (2016), 35-51.
doi: 10.1080/02331934.2014.984707.![]() ![]() ![]() |
[8] |
C. R. Chen, Hölder continuity of the unique solution to parametric vector quasiequilibrium problems via nonlinear scalarization, Positivity, 17 (2013), 133-150.
doi: 10.1007/s11117-011-0153-5.![]() ![]() ![]() |
[9] |
C. R. Chen and M. H. Li, Hölder continuity of solutions to parametric vector equilibrium problems with nonlinear scalarization, Numer. Funct. Anal. Optim., 35 (2014), 685-707.
doi: 10.1080/01630563.2013.818549.![]() ![]() ![]() |
[10] |
C. R. Chen, X. Zuo, F. Lu and S. J. Li, Vector equilibrium problems under improvement sets and linear scalarization with stability applications, Optim. Methods Softw., 31 (2016), 1240-1257.
doi: 10.1080/10556788.2016.1200043.![]() ![]() ![]() |
[11] |
C. R. Chen, S. J. Li, J. Zeng and X. B. Li, Error analysis of approximate solutions to parametric vector quasiequilibrium problems, Optim. Lett., 5 (2011), 85-98.
doi: 10.1007/s11590-010-0192-z.![]() ![]() ![]() |
[12] |
C. R. Chen, S. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, J. Global Optim., 45 (2009), 309-318.
doi: 10.1007/s10898-008-9376-9.![]() ![]() ![]() |
[13] |
G. Y. Chen, X. X. Huang and X. Q. Yang, Vector Optimization: Set-Valued and Variational Analysis, Springer, Berlin, 2005.
![]() ![]() |
[14] |
M. Chicco, F. Mignanego, L. Pusillo and S. Tijs, Vector optimization problem via improvement sets, J. Optim. Theory Appl., 150 (2011), 516-529.
doi: 10.1007/s10957-011-9851-1.![]() ![]() ![]() |
[15] |
G. Debreu, Theory of Value: An Axiomatic Analysis of Economic Equilibrium, John Wiley, New York, 1959.
![]() ![]() |
[16] |
M. Durea and R. Strugariu, Scalarization of constraints system in some vector optimization problems and applications, Optim. Lett., 8 (2014), 2021-2037.
doi: 10.1007/s11590-013-0690-x.![]() ![]() ![]() |
[17] |
M. Durea and C. Tammer, Fuzzy necessary optimality conditions for vector optimization problems, Optimization, 58 (2009), 449-467.
doi: 10.1080/02331930701761615.![]() ![]() ![]() |
[18] |
Chr. Gerstewitz (Tammer), Nichtkonvexe Dualität in der Vektoroptimierung, Wiss. Z. TH Leuna-Merseburg, 25 (1983), 357-364.
![]() ![]() |
[19] |
C. Gerth (Tammer) and P. Weidner, Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990), 297-320.
doi: 10.1007/BF00940478.![]() ![]() ![]() |
[20] |
F. Giannessi (ed.), Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, Kluwer Academic Publishers, Dordrecht, 2000.
doi: 10.1007/978-1-4613-0299-5.![]() ![]() ![]() |
[21] |
X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems, J. Optim. Theory Appl., 138 (2008), 197-205.
doi: 10.1007/s10957-008-9379-1.![]() ![]() ![]() |
[22] |
A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, Variational Methods in Partially Ordered Spaces, Springer, New York, 2003.
![]() ![]() |
[23] |
C. Gutiérrez, B. Jiménez and V. Novo, Improvement sets and vector optimization, Eur. J. Oper. Res., 223 (2012), 304-311.
doi: 10.1016/j.ejor.2012.05.050.![]() ![]() ![]() |
[24] |
J.-B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces, Math. Oper. Res., 4 (1979), 79-97.
doi: 10.1287/moor.4.1.79.![]() ![]() ![]() |
[25] |
J. Jahn, Vector Optimization-Theory, Applications, and Extensions, 2nd ed., Springer, Berlin, 2011.
doi: 10.1007/978-3-540-24828-6.![]() ![]() ![]() |
[26] |
A. A. Khan, C. Tammer and C. Zălinescu, Set-Valued Optimization, Springer, Berlin, 2015.
doi: 10.1007/978-3-642-54265-7.![]() ![]() ![]() |
[27] |
K. Kimura and J. C. Yao, Semicontinuity of solution mappings of parametric generalized vector equilibrium problems, J. Optim. Theory Appl., 138 (2008), 429-443.
doi: 10.1007/s10957-008-9386-2.![]() ![]() ![]() |
[28] |
C. S. Lalitha and P. Chatterjee, Stability and scalarization in vector optimization using improvement sets, J. Optim. Theory Appl., 166 (2015), 825-843.
doi: 10.1007/s10957-014-0686-4.![]() ![]() ![]() |
[29] |
S. J. Li, C. R. Chen, X. B. Li and K. L. Teo, Hölder continuity and upper estimates of solutions to vector quasiequilibrium problems, Eur. J. Oper. Res., 210 (2011), 148-157.
doi: 10.1016/j.ejor.2010.10.005.![]() ![]() ![]() |
[30] |
S. J. Li and X. B. Li, Hölder continuity of solutions to parametric weak generalized Ky Fan inequality, J. Optim. Theory Appl., 149 (2011), 540-553.
doi: 10.1007/s10957-011-9803-9.![]() ![]() ![]() |
[31] |
D. T. Luc, Theory of Vector Optimization, Springer, Berlin, 1989.
![]() ![]() |
[32] |
N. M. Nam and C. Zălinescu, Variational analysis of directional minimal time functions and applications to location problems, Set-Valued Var. Anal., 21 (2013), 405-430.
doi: 10.1007/s11228-013-0232-9.![]() ![]() ![]() |
[33] |
P. Oppezzi and A. Rossi, Improvement sets and convergence of optimal points, J. Optim. Theory Appl., 165 (2015), 405-419.
doi: 10.1007/s10957-014-0669-5.![]() ![]() ![]() |
[34] |
Z. Y. Peng, X. M. Yang and J. W. Peng, On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality, J. Optim. Theory Appl., 152 (2012), 256-264.
doi: 10.1007/s10957-011-9883-6.![]() ![]() ![]() |
[35] |
R. T. Rockafellar and R. J. -B. Wets, Variational Analysis, Springer, Berlin, 1998.
![]() ![]() |
[36] |
P. H. Sach and L. A. Tuan, New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems, J. Optim. Theory Appl., 157 (2013), 347-364.
doi: 10.1007/s10957-012-0105-7.![]() ![]() ![]() |
[37] |
C. Tammer and C. Zălinescu, Lipschitz properties of the scalarization function and applications, Optimization, 59 (2010), 305-319.
doi: 10.1080/02331930801951033.![]() ![]() ![]() |
[38] |
A. Zaffaroni, Degrees of efficiency and degrees of minimality, SIAM J. Control Optim., 42 (2003), 1071-1086.
doi: 10.1137/S0363012902411532.![]() ![]() ![]() |
[39] |
K. Q. Zhao and X. M. Yang, A unified stability result with perturbations in vector optimization, Optim. Lett., 7 (2013), 1913-1919.
doi: 10.1007/s11590-012-0533-1.![]() ![]() ![]() |
[40] |
K. Q. Zhao and X. M. Yang, $E$-Benson proper efficiency in vector optimization, Optimization, 64 (2015), 739-752.
doi: 10.1080/02331934.2013.798321.![]() ![]() ![]() |
[41] |
K. Q. Zhao, G. Y. Chen and X. M. Yang, Approximate proper efficiency in vector optimization, Optimization, 64 (2015), 1777-1793.
doi: 10.1080/02331934.2014.979818.![]() ![]() ![]() |