• Previous Article
    Onset of Benard-Marangoni instabilities in a double diffusive binary fluid layer with temperature-dependent viscosity
  • NACO Home
  • This Issue
  • Next Article
    Numerical solution with analysis of HIV/AIDS dynamics model with effect of fusion and cure rate
December  2019, 9(4): 401-412. doi: 10.3934/naco.2019039

Conformal deformations of a specific class of lorentzian manifolds with non-irreducible holonomy representation

Department of Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, P.O.Box 1993893973, Iran

* Corresponding author

The reviewing process of the paper is handled by Gafurjan Ibragimov, Siti Hasana Sapar and Siti Nur Iqmal Ibrahim

Received  December 2017 Revised  September 2018 Published  August 2019

Concerning holonomy theory or in the context of the existence of parallel spinors, Lorentzian manifolds with indecomposable, but non-irreducible holonomy representation have considerable significance. In this paper, we have comprehensively concentrated on conformal deformations of a particular class of four dimensional Lorentzian manifolds with indecomposable, non-irreducible holonomy representation which admit a recurrent light-like vector field. This type of Lorentzian manifolds are denoted by pr-waves and their holonomy algebra is contained in the parabolic algebra $ \big(\mathbb{R}\oplus \mbox{so(2)}\big)\ltimes \mathbb{R}^2 $. Moreover, it is mainly illustrated that for an arbitrary conformal diffeomorphism by inducing some specific structural conditions a pr-wave manifold behaves totally analogous to Einstein manifolds. Particularly, it is demonstrated that in some special circumstances the structure of a pr-wave manifold is precisely the same as a manifold equipped with a warped product metric.

Citation: Fatemeh Ahangari. Conformal deformations of a specific class of lorentzian manifolds with non-irreducible holonomy representation. Numerical Algebra, Control & Optimization, 2019, 9 (4) : 401-412. doi: 10.3934/naco.2019039
References:
[1]

A. Ali Al-Eid, Conformal Deformation of a Riemannian Metric, M.Sc. Thesis, 1423, 2001. Google Scholar

[2]

W. Batat, Curvature properties and Ricci solitons of Lorentzian pr-wave manifolds, J. Geom. Phys., 75 (2014), 7-16.  doi: 10.1016/j.geomphys.2013.08.014.  Google Scholar

[3]

A. Bejancu and H. R. Farran, Foliations and Geometric Structures, Springer-Verlag, Netherlands, 2006.  Google Scholar

[4]

A. Bejancu and H. R. Farran, Geometry of Pseudo-Finslerian Submanifolds, Springer, Netherlands, 2000. doi: 10.1007/978-94-015-9417-2.  Google Scholar

[5]

H. W. Brinkmann, Einstein spaces which are mapped conformally on each other, Math. Ann., 94 (1925), 119-145.  doi: 10.1007/BF01208647.  Google Scholar

[6]

G. de Rham, Sur la r$\acute{ e }$ducibilit$\acute{ e }$ d'un espace de Riemann, Math. Helv., 26 (1952), 328-344.  doi: 10.1007/BF02564308.  Google Scholar

[7]

A. Gray, Einstein-Like manifolds which are not Einstein, Geom. Dedicata, 7 (1978), 259-280.  doi: 10.1007/BF00151525.  Google Scholar

[8]

W. K$\ddot{ u }$hnel, Conformal transformation between Einstein spaces, Aspects of Math., E12 (1988), 105-146.   Google Scholar

[9]

W. K$\ddot{ u }$hnel and H.B. Rademacher, Conformal diffeomorphisms preserving the Ricci tensor, Proc. of Amer. Math. Soc., 123 (1995), 2841-2848.  doi: 10.2307/2160584.  Google Scholar

[10]

T. Leistner, Screen bundles of Lorentzian manifolds and some generalizations of pp-waves, J. Geom. Phys., 56 (2006), 2117-2134.  doi: 10.1016/j.geomphys.2005.11.010.  Google Scholar

[11]

T. Leistner, Holonomy and Parallel Spinors in Lorentzian Geometry, Logos Verlag, 2004. Google Scholar

[12]

M. M. Rezaii and A. Alipour-Fakhri, On projectively related warped product finsler manifolds, Int. J. Geom. Methods Mod. Phys., 8 (2011), 953-967.  doi: 10.1142/S0219887811005464.  Google Scholar

[13]

R. Schimming, Riemannsche R$\ddot{ a }$ume mit ebenfrontiger und mit ebener symmetrie, Math. Nachr., 59 (1974), 128-162.  doi: 10.1002/mana.19740590111.  Google Scholar

[14]

H. Wu, On the de Rham decomposition theorem, Illinois J. Math., 8 (1964), 291-311.   Google Scholar

show all references

References:
[1]

A. Ali Al-Eid, Conformal Deformation of a Riemannian Metric, M.Sc. Thesis, 1423, 2001. Google Scholar

[2]

W. Batat, Curvature properties and Ricci solitons of Lorentzian pr-wave manifolds, J. Geom. Phys., 75 (2014), 7-16.  doi: 10.1016/j.geomphys.2013.08.014.  Google Scholar

[3]

A. Bejancu and H. R. Farran, Foliations and Geometric Structures, Springer-Verlag, Netherlands, 2006.  Google Scholar

[4]

A. Bejancu and H. R. Farran, Geometry of Pseudo-Finslerian Submanifolds, Springer, Netherlands, 2000. doi: 10.1007/978-94-015-9417-2.  Google Scholar

[5]

H. W. Brinkmann, Einstein spaces which are mapped conformally on each other, Math. Ann., 94 (1925), 119-145.  doi: 10.1007/BF01208647.  Google Scholar

[6]

G. de Rham, Sur la r$\acute{ e }$ducibilit$\acute{ e }$ d'un espace de Riemann, Math. Helv., 26 (1952), 328-344.  doi: 10.1007/BF02564308.  Google Scholar

[7]

A. Gray, Einstein-Like manifolds which are not Einstein, Geom. Dedicata, 7 (1978), 259-280.  doi: 10.1007/BF00151525.  Google Scholar

[8]

W. K$\ddot{ u }$hnel, Conformal transformation between Einstein spaces, Aspects of Math., E12 (1988), 105-146.   Google Scholar

[9]

W. K$\ddot{ u }$hnel and H.B. Rademacher, Conformal diffeomorphisms preserving the Ricci tensor, Proc. of Amer. Math. Soc., 123 (1995), 2841-2848.  doi: 10.2307/2160584.  Google Scholar

[10]

T. Leistner, Screen bundles of Lorentzian manifolds and some generalizations of pp-waves, J. Geom. Phys., 56 (2006), 2117-2134.  doi: 10.1016/j.geomphys.2005.11.010.  Google Scholar

[11]

T. Leistner, Holonomy and Parallel Spinors in Lorentzian Geometry, Logos Verlag, 2004. Google Scholar

[12]

M. M. Rezaii and A. Alipour-Fakhri, On projectively related warped product finsler manifolds, Int. J. Geom. Methods Mod. Phys., 8 (2011), 953-967.  doi: 10.1142/S0219887811005464.  Google Scholar

[13]

R. Schimming, Riemannsche R$\ddot{ a }$ume mit ebenfrontiger und mit ebener symmetrie, Math. Nachr., 59 (1974), 128-162.  doi: 10.1002/mana.19740590111.  Google Scholar

[14]

H. Wu, On the de Rham decomposition theorem, Illinois J. Math., 8 (1964), 291-311.   Google Scholar

[1]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[2]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001

[3]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[4]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[5]

Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088

[6]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[7]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[8]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[9]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[10]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[11]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[12]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[13]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[14]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[15]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[16]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[17]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[18]

Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004

[19]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[20]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

 Impact Factor: 

Metrics

  • PDF downloads (294)
  • HTML views (587)
  • Cited by (0)

Other articles
by authors

[Back to Top]