Concerning holonomy theory or in the context of the existence of parallel spinors, Lorentzian manifolds with indecomposable, but non-irreducible holonomy representation have considerable significance. In this paper, we have comprehensively concentrated on conformal deformations of a particular class of four dimensional Lorentzian manifolds with indecomposable, non-irreducible holonomy representation which admit a recurrent light-like vector field. This type of Lorentzian manifolds are denoted by pr-waves and their holonomy algebra is contained in the parabolic algebra $ \big(\mathbb{R}\oplus \mbox{so(2)}\big)\ltimes \mathbb{R}^2 $. Moreover, it is mainly illustrated that for an arbitrary conformal diffeomorphism by inducing some specific structural conditions a pr-wave manifold behaves totally analogous to Einstein manifolds. Particularly, it is demonstrated that in some special circumstances the structure of a pr-wave manifold is precisely the same as a manifold equipped with a warped product metric.
Citation: |
[1] | A. Ali Al-Eid, Conformal Deformation of a Riemannian Metric, M.Sc. Thesis, 1423, 2001. |
[2] | W. Batat, Curvature properties and Ricci solitons of Lorentzian pr-wave manifolds, J. Geom. Phys., 75 (2014), 7-16. doi: 10.1016/j.geomphys.2013.08.014. |
[3] | A. Bejancu and H. R. Farran, Foliations and Geometric Structures, Springer-Verlag, Netherlands, 2006. |
[4] | A. Bejancu and H. R. Farran, Geometry of Pseudo-Finslerian Submanifolds, Springer, Netherlands, 2000. doi: 10.1007/978-94-015-9417-2. |
[5] | H. W. Brinkmann, Einstein spaces which are mapped conformally on each other, Math. Ann., 94 (1925), 119-145. doi: 10.1007/BF01208647. |
[6] | G. de Rham, Sur la r$\acute{ e }$ducibilit$\acute{ e }$ d'un espace de Riemann, Math. Helv., 26 (1952), 328-344. doi: 10.1007/BF02564308. |
[7] | A. Gray, Einstein-Like manifolds which are not Einstein, Geom. Dedicata, 7 (1978), 259-280. doi: 10.1007/BF00151525. |
[8] | W. K$\ddot{ u }$hnel, Conformal transformation between Einstein spaces, Aspects of Math., E12 (1988), 105-146. |
[9] | W. K$\ddot{ u }$hnel and H.B. Rademacher, Conformal diffeomorphisms preserving the Ricci tensor, Proc. of Amer. Math. Soc., 123 (1995), 2841-2848. doi: 10.2307/2160584. |
[10] | T. Leistner, Screen bundles of Lorentzian manifolds and some generalizations of pp-waves, J. Geom. Phys., 56 (2006), 2117-2134. doi: 10.1016/j.geomphys.2005.11.010. |
[11] | T. Leistner, Holonomy and Parallel Spinors in Lorentzian Geometry, Logos Verlag, 2004. |
[12] | M. M. Rezaii and A. Alipour-Fakhri, On projectively related warped product finsler manifolds, Int. J. Geom. Methods Mod. Phys., 8 (2011), 953-967. doi: 10.1142/S0219887811005464. |
[13] | R. Schimming, Riemannsche R$\ddot{ a }$ume mit ebenfrontiger und mit ebener symmetrie, Math. Nachr., 59 (1974), 128-162. doi: 10.1002/mana.19740590111. |
[14] | H. Wu, On the de Rham decomposition theorem, Illinois J. Math., 8 (1964), 291-311. |