-
Previous Article
Onset of Benard-Marangoni instabilities in a double diffusive binary fluid layer with temperature-dependent viscosity
- NACO Home
- This Issue
-
Next Article
Numerical solution with analysis of HIV/AIDS dynamics model with effect of fusion and cure rate
Conformal deformations of a specific class of lorentzian manifolds with non-irreducible holonomy representation
Department of Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, P.O.Box 1993893973, Iran |
Concerning holonomy theory or in the context of the existence of parallel spinors, Lorentzian manifolds with indecomposable, but non-irreducible holonomy representation have considerable significance. In this paper, we have comprehensively concentrated on conformal deformations of a particular class of four dimensional Lorentzian manifolds with indecomposable, non-irreducible holonomy representation which admit a recurrent light-like vector field. This type of Lorentzian manifolds are denoted by pr-waves and their holonomy algebra is contained in the parabolic algebra $ \big(\mathbb{R}\oplus \mbox{so(2)}\big)\ltimes \mathbb{R}^2 $. Moreover, it is mainly illustrated that for an arbitrary conformal diffeomorphism by inducing some specific structural conditions a pr-wave manifold behaves totally analogous to Einstein manifolds. Particularly, it is demonstrated that in some special circumstances the structure of a pr-wave manifold is precisely the same as a manifold equipped with a warped product metric.
References:
[1] |
A. Ali Al-Eid, Conformal Deformation of a Riemannian Metric, M.Sc. Thesis, 1423, 2001. |
[2] |
W. Batat,
Curvature properties and Ricci solitons of Lorentzian pr-wave manifolds, J. Geom. Phys., 75 (2014), 7-16.
doi: 10.1016/j.geomphys.2013.08.014. |
[3] |
A. Bejancu and H. R. Farran, Foliations and Geometric Structures, Springer-Verlag, Netherlands, 2006. |
[4] |
A. Bejancu and H. R. Farran, Geometry of Pseudo-Finslerian Submanifolds, Springer, Netherlands, 2000.
doi: 10.1007/978-94-015-9417-2. |
[5] |
H. W. Brinkmann,
Einstein spaces which are mapped conformally on each other, Math. Ann., 94 (1925), 119-145.
doi: 10.1007/BF01208647. |
[6] |
G. de Rham,
Sur la r$\acute{ e }$ducibilit$\acute{ e }$ d'un espace de Riemann, Math. Helv., 26 (1952), 328-344.
doi: 10.1007/BF02564308. |
[7] |
A. Gray,
Einstein-Like manifolds which are not Einstein, Geom. Dedicata, 7 (1978), 259-280.
doi: 10.1007/BF00151525. |
[8] |
W. K$\ddot{ u }$hnel,
Conformal transformation between Einstein spaces, Aspects of Math., E12 (1988), 105-146.
|
[9] |
W. K$\ddot{ u }$hnel and H.B. Rademacher,
Conformal diffeomorphisms preserving the Ricci tensor, Proc. of Amer. Math. Soc., 123 (1995), 2841-2848.
doi: 10.2307/2160584. |
[10] |
T. Leistner,
Screen bundles of Lorentzian manifolds and some generalizations of pp-waves, J. Geom. Phys., 56 (2006), 2117-2134.
doi: 10.1016/j.geomphys.2005.11.010. |
[11] |
T. Leistner, Holonomy and Parallel Spinors in Lorentzian Geometry, Logos Verlag, 2004. |
[12] |
M. M. Rezaii and A. Alipour-Fakhri,
On projectively related warped product finsler manifolds, Int. J. Geom. Methods Mod. Phys., 8 (2011), 953-967.
doi: 10.1142/S0219887811005464. |
[13] |
R. Schimming,
Riemannsche R$\ddot{ a }$ume mit ebenfrontiger und mit ebener symmetrie, Math. Nachr., 59 (1974), 128-162.
doi: 10.1002/mana.19740590111. |
[14] |
H. Wu,
On the de Rham decomposition theorem, Illinois J. Math., 8 (1964), 291-311.
|
show all references
References:
[1] |
A. Ali Al-Eid, Conformal Deformation of a Riemannian Metric, M.Sc. Thesis, 1423, 2001. |
[2] |
W. Batat,
Curvature properties and Ricci solitons of Lorentzian pr-wave manifolds, J. Geom. Phys., 75 (2014), 7-16.
doi: 10.1016/j.geomphys.2013.08.014. |
[3] |
A. Bejancu and H. R. Farran, Foliations and Geometric Structures, Springer-Verlag, Netherlands, 2006. |
[4] |
A. Bejancu and H. R. Farran, Geometry of Pseudo-Finslerian Submanifolds, Springer, Netherlands, 2000.
doi: 10.1007/978-94-015-9417-2. |
[5] |
H. W. Brinkmann,
Einstein spaces which are mapped conformally on each other, Math. Ann., 94 (1925), 119-145.
doi: 10.1007/BF01208647. |
[6] |
G. de Rham,
Sur la r$\acute{ e }$ducibilit$\acute{ e }$ d'un espace de Riemann, Math. Helv., 26 (1952), 328-344.
doi: 10.1007/BF02564308. |
[7] |
A. Gray,
Einstein-Like manifolds which are not Einstein, Geom. Dedicata, 7 (1978), 259-280.
doi: 10.1007/BF00151525. |
[8] |
W. K$\ddot{ u }$hnel,
Conformal transformation between Einstein spaces, Aspects of Math., E12 (1988), 105-146.
|
[9] |
W. K$\ddot{ u }$hnel and H.B. Rademacher,
Conformal diffeomorphisms preserving the Ricci tensor, Proc. of Amer. Math. Soc., 123 (1995), 2841-2848.
doi: 10.2307/2160584. |
[10] |
T. Leistner,
Screen bundles of Lorentzian manifolds and some generalizations of pp-waves, J. Geom. Phys., 56 (2006), 2117-2134.
doi: 10.1016/j.geomphys.2005.11.010. |
[11] |
T. Leistner, Holonomy and Parallel Spinors in Lorentzian Geometry, Logos Verlag, 2004. |
[12] |
M. M. Rezaii and A. Alipour-Fakhri,
On projectively related warped product finsler manifolds, Int. J. Geom. Methods Mod. Phys., 8 (2011), 953-967.
doi: 10.1142/S0219887811005464. |
[13] |
R. Schimming,
Riemannsche R$\ddot{ a }$ume mit ebenfrontiger und mit ebener symmetrie, Math. Nachr., 59 (1974), 128-162.
doi: 10.1002/mana.19740590111. |
[14] |
H. Wu,
On the de Rham decomposition theorem, Illinois J. Math., 8 (1964), 291-311.
|
[1] |
Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017 |
[2] |
Yoon-Tae Jung, Soo-Young Lee, Eun-Hee Choi. Ricci curvature of conformal deformation on compact 2-manifolds. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3223-3231. doi: 10.3934/cpaa.2020140 |
[3] |
Patrick Foulon, Vladimir S. Matveev. Zermelo deformation of finsler metrics by killing vector fields. Electronic Research Announcements, 2018, 25: 1-7. doi: 10.3934/era.2018.25.001 |
[4] |
Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems and Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1 |
[5] |
Federico Cacciafesta, Anne-Sophie De Suzzoni. Weak dispersion for the Dirac equation on asymptotically flat and warped product spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4359-4398. doi: 10.3934/dcds.2019177 |
[6] |
Igor Rivin and Jean-Marc Schlenker. The Schlafli formula in Einstein manifolds with boundary. Electronic Research Announcements, 1999, 5: 18-23. |
[7] |
S. A. Krat. On pairs of metrics invariant under a cocompact action of a group. Electronic Research Announcements, 2001, 7: 79-86. |
[8] |
Alberto Farina, Jesús Ocáriz. Splitting theorems on complete Riemannian manifolds with nonnegative Ricci curvature. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1929-1937. doi: 10.3934/dcds.2020347 |
[9] |
Alberto Farina, Enrico Valdinoci. A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1139-1144. doi: 10.3934/dcds.2011.30.1139 |
[10] |
Joachim Escher, Boris Kolev. Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. Journal of Geometric Mechanics, 2014, 6 (3) : 335-372. doi: 10.3934/jgm.2014.6.335 |
[11] |
H. M. Hastings, S. Silberger, M. T. Weiss, Y. Wu. A twisted tensor product on symbolic dynamical systems and the Ashley's problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 549-558. doi: 10.3934/dcds.2003.9.549 |
[12] |
Ali Hyder, Luca Martinazzi. Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 283-299. doi: 10.3934/dcds.2015.35.283 |
[13] |
Yacine Aït Amrane, Rafik Nasri, Ahmed Zeglaoui. Warped Poisson brackets on warped products. Journal of Geometric Mechanics, 2014, 6 (3) : 279-296. doi: 10.3934/jgm.2014.6.279 |
[14] |
Lakehal Belarbi. Ricci solitons of the $ \mathbb{H}^{2} \times \mathbb{R} $ Lie group. Electronic Research Archive, 2020, 28 (1) : 157-163. doi: 10.3934/era.2020010 |
[15] |
Paul W. Y. Lee, Chengbo Li, Igor Zelenko. Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 303-321. doi: 10.3934/dcds.2016.36.303 |
[16] |
Chi-Kwong Fok. Picard group of isotropic realizations of twisted Poisson manifolds. Journal of Geometric Mechanics, 2016, 8 (2) : 179-197. doi: 10.3934/jgm.2016003 |
[17] |
Joachim Escher, Rossen Ivanov, Boris Kolev. Euler equations on a semi-direct product of the diffeomorphisms group by itself. Journal of Geometric Mechanics, 2011, 3 (3) : 313-322. doi: 10.3934/jgm.2011.3.313 |
[18] |
Sebastian Acosta. A control approach to recover the wave speed (conformal factor) from one measurement. Inverse Problems and Imaging, 2015, 9 (2) : 301-315. doi: 10.3934/ipi.2015.9.301 |
[19] |
Marco Zambon. Holonomy transformations for Lie subalgebroids. Journal of Geometric Mechanics, 2021, 13 (3) : 517-532. doi: 10.3934/jgm.2021016 |
[20] |
Jinghong Liu, Yinsuo Jia. Gradient superconvergence post-processing of the tensor-product quadratic pentahedral finite element. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 495-504. doi: 10.3934/dcdsb.2015.20.495 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]