The effect of temperature-dependent viscosity in a horizontal double diffusive binary fluid layer is investigated. When the layer is heated from below, the convection of Benard-Marangoni will start to exists. Linear stability analysis is performed and the eigenvalues from few cases of boundary conditions were obtained. Galerkin method were used to solve the numerical calculation and marginal stability curve is obtained. Results shows that an increase of temperature-dependent viscosity will destabilized the system. The impact of double diffusive coefficients are also revealed. It is found that the effect of Soret parameter exhibits destabilizing reaction on the system while an opposite response is noted with an increase of Dufour parameter.
Citation: |
[1] | N. H. Z. Abidin, N. F. M. Mokhtar, I. K. Khalid, R. A. Rahim and S. S. A. Gani, Stability control in a binary fluid mixture subjected to cross diffusive coefficients, International Journal on Advanced Science, Engineering and Information Technology, 7 (2017), 322-328. doi: 10.18517/ijaseit.7.1.1321. |
[2] | N. H. Z. Abidin, N. M. Arifin and M. S. Noorani, Boundary effect on Marangoni convection in a variable viscosity fluid layer, Journal of Mathematics and Statistics, 4 (2008), 1-8. doi: 10.3844/jmssp.2008.1.8. |
[3] | N. M. Arifin and N. H. Z. Abidin, Marangoni convection in a variable viscosity fluid layer with feedback control, Journal of Applied Computer Science & Mathematics, 3 (2009), 373-382. |
[4] | N. M. Arifin and N. H. Z. Abidin, Stability of Marangoni convection in a fluid layer with variable viscosity and deformable free surface under free-slip condition, Journal of Applied Computer Science & Mathematics, 3 (2009), 43-47. doi: https://www.ingentaconnect.com/content/doaj/20664273/2009/00000003/00000006/art00007. |
[5] | A. Bergeon, D. Henry, H Benhadid and L. S. Tuckerman, Marangoni convection in binary mixtures with Soret effect, J. Fluid Mech., 375 (1998), 143-177. doi: 10.1017/S0022112098002614. |
[6] | C. F. Chen and T. F. Su, Effect of surface tension on the onset of convection in a double-diffusive layer, Physics of Fluids A: Fluid Dynamics, 4 (1992), 2360-2367. doi: 10.1063/1.858477. |
[7] | A. Cloot and G. Lebon, Marangoni instability in a fluid layer with variable viscosity and free interface, in microgravity, PhysicoChemical Hydrodynamics, 6 (1985), 453-462. |
[8] | F. Franchi and B. Straughan, Nonlinear stability for thermal convection in a micropolar fluid with temperature dependent viscosity, Int. J. Eng. Sci., 30 (1992), 1349-1360. doi: 10.1016/0020-7225(92)90146-8. |
[9] | M. Hilt, M. Gl$\ddot{a}$ssl and W. Zimmermann, Effects of a temperature-dependent viscosity on thermal convection in binary mixtures, , Physical Review E, 89 (2014), 052312. doi: 10.1103/PhysRevE.89.052312. |
[10] | D. T. J. Hurle and E. Jakeman, Soret-driven thermosolutal convection, J. Fluid Mech., 47 (1971), 667-1360. doi: 10.1017/S0022112071001319. |
[11] | Z. Kozhoukharova and C. Rozé, Influence of the surface deformability and variable viscosity on buoyant-thermocapillary instability in a liquid layer, Eur. Phys. J. B, 8 (1999), 125-135. doi: 10.1007/s100510050674. |
[12] | J. W. Lu and F. Chen, Onset of double-diffusive convection of unidirectionally solidifying binary solution with variable viscosity, J. Cryst. Growth, 149 (1995), 131-140. doi: 10.1016/0022-0248(94)01006-4. |
[13] | M. Manga, D. Weeraratne and S. J. S. Morris, Boundary-layer thickness and instabilities in Bnard convection of a liquid with a temperature-dependent viscosity, Phys. Fluids, 13 (2001), 802-805. doi: 10.1063/1.1345719. |
[14] | C. E. Nanjundappa, I. S. Shivakumara, R Arunkumar and Ar unkumar, Onset of Marangoni-B$\acute{e}$nard ferroconvection with temperature dependent viscosity, Microgravity Sci. Technol, 25 (2013), 103-1360. doi: 10.1007/s12217-012-9330-9. |
[15] | D. A. Nield and A. V. Kuznetsov, The onset of double-diffusive convection in a nanofluid layer, Int. J. Heat Fluid Flow, 32 (1967), 771-776. doi: 10.1016/j.ijheatfluidflow.2011.03.010. |
[16] | E. Palm, On the tendency towards hexagonal cells in steady convection, J. Fluid Mech, 8 (1960), 183–3011., doi: 10.1017/S0022112060000530. |
[17] | N. E. Ramirez and A. E. Saez, The effect of variable viscosity on boundary-layer heat transfer in a porous medium, Int. Commun. Heat Mass Transfer, 17 (1990), 477-488. doi: 10.1016/0735-1933(90)90066-S. |
[18] | M. M. Rashidi, N. Kavyani, S. Abelman, M.J. Uddin and N. Freidoonimehr, Double diffusive magnetohydrodynamic (MHD) mixed convective slip flow along a radiating moving vertical flat plate with convective boundary condition, , PLoS ONEs, 9 (2014), e109404. doi: 10.1371/journal.pone.0109404. |
[19] | S. Saravanan and T. Sivakumar, Exact solution of Marangoni convection in a binary fluid with throughflow and Soret effect, Applied Mathematical Modelling, 33 (2009), 3674-3681. doi: 10.1016/j.apm.2008.12.017. |
[20] | S. Slavtchev, G. Simeonov, S Van Vaerenbergh and J. C. Legros, Technical note Marangoni instability of a layer of binary liquid in the presence of nonlinear Soret effect, Int. J. Heat Mass Transfer, 42 (1999), 3007-3011. doi: 10.1016/S0017-9310(98)00353-6. |
[21] | K. C. Stengel, D. S. Oliver and J. R. Booker, Onset of convection in a variable-viscosity fluid, J. Fluid Mech, 120 (1982), 411-431. doi: 10.1017/S0022112082002821. |
[22] | K. E. Torrance and D. L. Turcotte, Thermal convection with large viscosity variations, J. Fluid Mech, 47 (1971), 113-125. doi: 10.1017/S002211207100096X. |
[23] | D. B. White, The planforms and onset of convection with a temperature-dependent viscosity, J. Fluid Mech., 191 (1988), 247-286. doi: 10.1017/S0022112088001582. |