[1]
|
R. P. Agarwal, M. Benchohra and S. Hamani, Boundary value problems for fractional differential equations, Georgian Mathe. J., 16 (2009), 401-411.
doi: 10.1007/s10440-008-9356-6.
|
[2]
|
R. P. Agarwal, Y. Zhou and Y.-Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095-1100.
doi: 10.1016/j.camwa.2009.05.010.
|
[3]
|
M. Benchohra, S. Hamani and S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surv. Math. Appl., 3 (2008), 1-12.
|
[4]
|
M. Benchohra, S. Hamani and S. K. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal., 71 (2009), 2391-2396.
doi: 10.1016/j.na.2009.01.073.
|
[5]
|
J. Brzdek and N. Eghbali, On approximate solutions of some delayed fractional differential equations, Appl. Math. Lett., 54 (2016), 31-35.
doi: 10.1016/j.aml.2015.10.004.
|
[6]
|
J.-W. Deng, L.-J. Zhao and Y.-J. Wu, Efficient algorithms for solving the fractional ordinary differential equations, Appl. Math. Comput., 269 (2015), 196-216.
doi: 10.1016/j.amc.2015.07.048.
|
[7]
|
A. M. A. El-Sayed, Fractional differential equations, Kyungpook Math. J., 28 (1988), 119-122.
|
[8]
|
J.-H. He, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol., 15 (1999), 86-90.
|
[9]
|
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
doi: 10.1142/9789812817747.
|
[10]
|
V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21 (2008), 828-834.
doi: 10.1016/j.aml.2007.09.006.
|
[11]
|
V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677-2682.
doi: 10.1016/j.na.2007.08.042.
|
[12]
|
V. Lakshmikantham and J. V. Devi, Theory of fractional differential equations in a Banach space, Eur. J. Pure Appl. Math., 1 (2008), 38-45.
|
[13]
|
C. Li, Q. Yi and A. Chen, Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316 (2016), 614-631.
doi: 10.1016/j.jcp.2016.04.039.
|
[14]
|
H. Liang and M. Stynes, Collocation methods for general Caputo two-point boundary value problems, J. Sci. Comput., 76 (2018), 390-425.
doi: 10.1007/s10915-017-0622-5.
|
[15]
|
P. Lyu, S. Vong and Z. Wang, A finite difference method for boundary value problems of a Caputo fractional differential equation, East. Asia. J. Appl. Math., 7 (2017), 752-766.
doi: 10.4208/eajam.181016.300517e.
|
[16]
|
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, INC., New York, 1993.
|
[17]
|
K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, London, 1974.
|
[18]
|
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198, Academic Press, New York, 1999.
|
[19]
|
M. Stynes and J.-L. Gracia, A finite difference method for a two-point boundary value problem with a Caputo fractional derivative, IMA J. Numer. Anal., 35 (2015), 698-721.
doi: 10.1093/imanum/dru011.
|
[20]
|
Y.-F. Sun and P.-G. Wang, Quasilinear iterative scheme for a fourth-order differential equation with retardation and anticipation, Appl. Math. Comput., 217 (2010), 3442-3452.
doi: 10.1016/j.amc.2010.09.011.
|
[21]
|
Y.-F. Sun, Z. Zeng and J. Song, Existence and uniqueness for the boundary value problems of nonlinear fractional differential equation, Appl. Math., 8 (2017), 312-323.
|
[22]
|
P.-G. Wang, S.-H. Tian and Y.-H. Wu, Monotone iterative method for first-order functional difference equations with nonlinear boundary value conditions, Appl. Math. Comput., 203 (2008), 266-272.
doi: 10.1016/j.amc.2008.04.033.
|
[23]
|
P.-G. Wang, H.-X. Wu and Y.-H. Wu, Higher even-order convergence and coupled solutions for second-order boundary value problems on time scales, Comput. Math. Appl., 55 (2008), 1693-1705.
doi: 10.1016/j.camwa.2007.06.026.
|