
-
Previous Article
Optimal control of an HIV model with CTL cells and latently infected cells
- NACO Home
- This Issue
-
Next Article
Quadratic optimization with two ball constraints
Formal analysis of the Schulz matrix inversion algorithm: A paradigm towards computer aided verification of general matrix flow solvers
United Technologies Research Center Ltd., 2nd Floor Penrose Wharf Business Centre, Penrose Quay, Cork, T23 XN53, Ireland |
This paper pilots Schulz generalised matrix inverse algorithm as a paradigm in demonstrating how computer aided reachability analysis and theoretical numerical analysis can be combined effectively in developing verification methodologies and tools for matrix iterative solvers. It is illustrated how algorithmic convergence to computed solutions with required accuracy is mathematically quantified and used within computer aided reachability analysis tools to formally verify convergence over predefined sets of multiple problem data. In addition, some numerical analysis results are used to form computational reliability monitors to escort the algorithm on-line and monitor the numerical performance, accuracy and stability of the entire computational process. For making the paper self-contained, formal verification preliminaries and background on tools and approaches are reported together with the detailed numerical analysis in basic mathematical language. For demonstration purposes, a custom made reachability analysis program based on affine arithmetic is applied to numerical examples.
References:
[1] |
AAFLIB - An Affine Arithmetic C++, 2019. Available from: http://aaflib.sourceforge.net. Google Scholar |
[2] |
R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. H. Ho, X. Nicollin, A. Olivero, J. Sifakis and S. Yovine,
The algorithmic analysis of hybrid systems, Theoretical Computer Science, 138 (1995), 3-34.
doi: 10.1016/0304-3975(94)00202-T. |
[3] |
R. Alur, T. A. Henzinger, G. Lafferriere and G. Pappas, Discrete abstractions of hybrid systems, Proceedings of the IEEE 88, 7 (2000), 971-984. Google Scholar |
[4] |
R. Alur, T. Dang and F. Ivancic,
Counter example-guided predicate abstraction of hybrid systems, Theoretical Computer Science, 354 (2006), 250-271.
doi: 10.1016/j.tcs.2005.11.026. |
[5] |
Y. Annapureddy, C. Liu, G. Fainekos and S. Sankaranarayanan, S-TaLiRo: A tool for temporal logic falsification for hybrid systems, Proc. of Tools and Algorithms for the Construction and Analysis of Systems, (2011), 254–257. Google Scholar |
[6] |
E. Asarin, T. Dang and O. Maler, The d/dt tool for verification of hybrid systems, Int. Conf. on Computer Aided Verification, LNCS, Springer-Verlag, (2002), 365–350. Google Scholar |
[7] |
A. Ben-Israel and D. Cohen,
On iterative computation of generalized inverses and associated projections, SIAM J. Numer. Anal., 3 (1966), 410-419.
doi: 10.1137/0703035. |
[8] |
A. Ben-Israel and T. N. E. Greville, Generalized Inverses Theory and Applications, Springer, 2003, ISBN 978-0-387-00293-4. |
[9] |
A. Bhatia and E. Frazzoli, Incremental search methods for reachability analysis of continuous and hybrid systems, Hybrid Systems: Computation and Control, LNCS, Springer-Verlag, 2993 (2004), 142–156. Google Scholar |
[10] |
O. Botchkarev and S. Tripakis, Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations, Hybrid Systems: Computation and Control, LNCS, Springer-Verlag, 1790 (2000), 73–78. Google Scholar |
[11] |
M. S. Branicky, M. M. Curtiss, J. Levine and S. Morgan, Sampling-based planning, control, and verification of hybrid systems, Control Theory and Applications, 153 (2006), 575-590. Google Scholar |
[12] |
C. Bu, X. Zhang, J. Zhou, W. Wang and Y. Wei,
The inverse, rank and product of tensors, Linear Algebra and Its Applications, 446 (2014), 269-280.
doi: 10.1016/j.laa.2013.12.015. |
[13] |
X. Chen, E. Abraham and S. Sankaranarayanan, Flow* An analyzer for non-linear hybrid systems, Proc. of CAV13, LNCS, Springer, 8044 (2013), 258–263.
doi: 10.1007/978-3-642-39799-8_18. |
[14] |
X. Chen, Reachability Analysis of Non-Linear Hybrid Systems Using Taylor Models, PhD Thesis in RWTH Aachen University, Germany, 2015. Google Scholar |
[15] |
C. Chutinan and B. H. Krogh,
Computational techniques for hybrid system verification, IEEE Transactions on Automatic Control, 48 (2003), 64-75.
doi: 10.1109/TAC.2002.806655. |
[16] |
E. M Clarke, W. Klieber, M. Novcek and P. Zuliani, Model checking and the state explosion problem, Tools for Practical Software Verification, Springer, (2012), 1–30. Google Scholar |
[17] |
E. M. Clarke, Th. A. Henzinger, H. Veith and R. Bloem, Handbook of Model Checking, Springer International Publishing, 2018.
doi: 10.1007/978-3-319-10575-8. |
[18] |
J-J. Climent, N. Thome and Y. Wei,
A geometrical approach on generalized inverses by Neumann-type series, Linear Algebra and Its Applications, 1 (2001), 533-540.
doi: 10.1016/S0024-3795(01)00309-3. |
[19] |
B. Datta, Numerical Methods for Linear Control Systems, Elsevier Academic Press, 2004.
![]() |
[20] |
M. Daumas, D. Lester and C. Muoz,
Verified real number calculations, A library for interval arithmetic, IEEE Transactions on Computers, 58 (2009), 226-237.
doi: 10.1109/TC.2008.213. |
[21] |
A. Donze, Breach, a toolbox for verification and parameter synthesis of hybrid systems, Proc. of Computer Aided Verification, (2010), 167–170. Google Scholar |
[22] |
P. Duggirala, S. Mitra, M. Viswanathan and M. Potok, C2E2 A verification tool for Stateflow models, Proc. of TACAS15, LNCS, Springer, 9035 (2015), 68–82. Google Scholar |
[23] |
J. M. Esposito, J. Kim and V. Kumar, Adaptive RRTs for validating hybrid robotic control systems, Workshop on Algorithmic Foundations of Robotics, Zeist, Netherlands, (2004), 107–132. Google Scholar |
[24] |
J. Kim, J. M. Esposito and V. Kumar, An RRT-based algorithm for testing and validating multi-robot controllers, Robotics: Science and Systems, Boston, MA, (2005), 249–256. Google Scholar |
[25] |
L. H. de Figueiredo and J. Stolfi,
Affine arithmetic: concepts and applications, Numerical Algorithms, 37 (2004), 147-158.
doi: 10.1023/B:NUMA.0000049462.70970.b6. |
[26] |
G. Frehse, C. L. Guernic, A. Donz, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang and O. Maler, SpaceEx Scalable verification of hybrid systems, Proc. of CAV11, LNCS, Springer, 6806 (2011), 379–395.
doi: 10.1007/978-3-642-22110-1_30. |
[27] |
G. Frehse, R. Kateja and C. Le Guernic,
Flowpipe approximation and clustering in space-time, Proc. of HSCC13, 9035 (2013), 203-212.
doi: 10.1145/2461328.2461361. |
[28] |
M. Gameiro and P. Manolios, Formally verifying an algorithm based on interval arithmetic for checking transversality, Workshop on ACL2 Prover and Applications, 2004. Google Scholar |
[29] |
N. Giorgetti, G.J. Pappas and A. Bemporad, Bounded model checking for hybrid dynamical systems, IEEE Conference on Decision and Control, Seville, Spain, (2005), 672–677. Google Scholar |
[30] |
C. Le Guernic, Reachability Analysis of Hybrid Systems with Linear Continuous Dynamics, PhD Thesis in Universit Joseph-Fourier-Grenoble I, France, 2009. Google Scholar |
[31] |
T. Henzinger, P. Kopke, A. Puri and P. Varaiya, What's decidable about hybrid automata?, ACM Symposium on Theory of Computing, (1995), 273–282.
doi: 10.1016/0895-7177(96)00072-6. |
[32] |
T. Henzinger, The theory of hybrid automata, Symposium on Logic in Computer Science, (1996), 278–292.
doi: 10.1109/LICS.1996.561342. |
[33] |
F. Immler, Tool presentation Isabelle/hol for reachability analysis of continuous systems, in ARCH14-15, 1st and 2nd International Workshop on Applied veRification for Continuous and Hybrid Systems (eds. M. Frehse and M. Althoff), Academic Press, (1971), 33–75. EPiC Series in Computer Science, 34 (2015), 180–187. |
[34] |
A. A. A. Julius, G. E. Fainekos, M. Anand, I. Lee and G. J. Pappas, IRobust test generation and coverage for hybrid systems, Hybrid Systems: Computation and Control, LNCS, Springer-Verlag, 4416 (2007), 329–342. Google Scholar |
[35] |
S. Kong, S. Gao and W. Chen, Reachability analysis for hybrid systems, Proc. of TACAS15, LNCS, Springer, 9035 (2015), 200–205. Google Scholar |
[36] |
M. Konstantinov, D. Gu, V. Mehrmann and P. Petkov, Perturbation Theory for Matrix Equations, 2$^{nd}$ edition, Elsevier, Amsterdam, 2003, ISBN-9780444513151. |
[37] |
G. A. Kumar, T. V. Subbareddy, B. M. Redd, N. Raju and V. Elamaran, An approach to design a matrix inversion hardware module using FPGA, Int. Conf. on Control, Instrumentation, Comm. and Comput. Technologies, 230 (2014), 87-90. Google Scholar |
[38] |
G. Lafferriere, G. Pappas and S. Yovine, A new class of decidable hybrid systems, Hybrid Systems: Computation and Control, LNCS, 1569 (1999), 137-151. Google Scholar |
[39] |
LAPACK-Linear Algebra PACKage, 2019. Available from: http://www.netlib.org/lapack/. Google Scholar |
[40] |
W. Levine, The Control Handbook, IEEE Press, 1996. Google Scholar |
[41] |
C. Livadas and N. Lynch, A new class of decidable hybrid systems, Hybrid Systems: Computation and Control, LNCS, 1386 (1998), 253-272. Google Scholar |
[42] |
Matlab-Mathworks, 2019. Available from: https://www.mathworks.com Google Scholar |
[43] |
F. Messine and A. Touhami,
A general reliable quadratic form: an extension of affine arithmetic, Reliable Computing, 12 (2006), 171-192.
doi: 10.1007/s11155-006-7217-4. |
[44] |
D. Monniaux, Toward verifiably correct control implementations, The impact of control technology Part 2: Challenges for control research, Report of IEEE Control Systems Society, 2nd Ed, 2011. Available from: http://ieeecss.org/general/IoCT2-report. Google Scholar |
[45] |
D. Monniaux and A. Mine, Verification of control system software, the impact of control technology, Part 1: Success stories for control, Report of IEEE Control Systems Society, 2nd Ed, 2011. Available from: http://ieeecss.org/general/IoCT2-report. Google Scholar |
[46] |
R. E. Moore, Methods and Applications of Interval Analysis, SIAM Studies in Applied and Numerical Mathematics, Philadelphia, 1987, ISBN-10: 0898711614. |
[47] |
R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis, SIAM, 2009.
doi: 10.1137/1.9780898717716. |
[48] |
C. Munoz and D. Lester, Real number calculations and theorem proving, 18th Int. Conf. on Theorem Proving in Higher Order Logics, England, (2005), 239–254.
doi: 10.1007/11541868_13. |
[49] |
T. Nahhal and T. Dang, Test coverage for continuous and hybrid systems, Int. Conf. on Computer Aided Verification, LNCS, 4590 (2007), 449-462. Google Scholar |
[50] |
I. Pasca, Formal Verifcation for Numerical Methods, PhD Thesis in Universit Nice Sophia Antipolis, France, 2010. Google Scholar |
[51] |
P. Petkov, M. Konstantinov and N. Christov, Computational Methods for Linear Control Systems, 2$^{nd}$ edition, Prentice- Hall, Hemel Hempstead, 1991, ISBN-9780444513151. Google Scholar |
[52] |
M. D. Petkovic and P. S. Stanimirovic,
Generalized matrix inversion is not harder than matrix multiplication, J. Comput. and Applied Math., 230 (2009), 270-282.
doi: 10.1016/j.cam.2008.11.012. |
[53] |
M. D. Petkovic and P. S. Stanimirovic,
Iterative method for computing Moore-Penrose inverse based on Penrose equations, J. Comput. and Applied Math., 235 (2011), 1604-1613.
doi: 10.1016/j.cam.2010.08.042. |
[54] |
M. S. Petkovic,
Iterative methods for bounding the inverse of a matrix (a survey), FILOMAT Nis, Algebra Logic & Discrete Mathematics, 9 (1995), 543-577.
|
[55] |
E. Plaku, L. Kavraki and M. Vardi, Hybrid systems: from verification to falsification by combining motion planning and discrete search, Formal Methods in System Design, 34 (2009), 157-182. Google Scholar |
[56] |
A. Platzer and J-D Quesel, KeYmaera a hybrid theorem prover for hybrid systems (system description), Automated Reasoning, IJCAR 2008, Lecture Notes in Computer Science (eds. M. Frehse and M. AlthoffArmando A., Baumgartner P., Dowek G.), Springer Berlin Heidelberg, 5195 (2008), 163–183.
doi: 10.1007/978-3-540-71070-7_15. |
[57] |
A. Puri, Theory of Hybrid Systems and Discrete Event Systems, PhD Thesis in University of California, Berkeley, 1995. Google Scholar |
[58] |
PyInterval - Interval arithmetic in Python, 2019. Available from: https://github.com/taschini/pyinterval Google Scholar |
[59] |
S. Qiao, X. Wang and Y. Wei,
Two finite-time convergent Zhang neural network models for time-varying complex matrix Drazin inverse, Linear Algebra and Its Applications, 542 (2018), 101-117.
doi: 10.1016/j.laa.2017.03.014. |
[60] |
Y. Rahman, A. Xie and S. Bernstein, Retrospective cost adaptive control: pole placement, frequency response, and connections with LQG control, IEEE Control System Magazine, (2017), 28–69.
doi: 10.1109/MCS.2017.2718825. |
[61] |
S. Ratschan and Z. She, Safety verification of hybrid systems by constraint propagation based abstraction refinement, ACM Transactions on Embedded Computing Systems, 6 (2007), Article No. 8.
doi: 10.1145/1210268.1210276. |
[62] |
RTCA Formal Methods Supplement to DO-178C and DO-278A, RTCA DO-333, December 13, 2011. Google Scholar |
[63] |
RTCA, Software Considerations in Airborne Systems and Equipment Certification, RTCA DO-178C, December 13, 2011. Google Scholar |
[64] |
S. Schupp, E. Abraham, X. Chen, I. B. Makhlouf, G. Frehse, S. Sankaranarayanan and S. Kowalewski, Current challenges in the verification of hybrid systems, Workshop on Design, Modeling, and Evaluation of Cyber Physical Systems, (2015), 8–24. Google Scholar |
[65] |
S. Schupp and E. Abraham, Efficient dynamic error reduction for hybrid systems reachability analysis, Proc. of the 24th International Conference on Tools and Algorithms for the Construction and Analysis of Systems TACAS18, LNCS, Springer, 2018. Google Scholar |
[66] |
B. I. Silva and B. H. Krogh, Formal verification of hybrid systems using CheckMate: A case study, American Control Conference, (2000), 1679–1683. Google Scholar |
[67] |
G. Stewart and J. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990. |
[68] |
O. Stursberg and B. H. Krogh, Efficient representation and computation of reachable sets for hybrid systems, Hybrid Systems: Computation and Control, LNCS, 2623 (2003), 482-497. Google Scholar |
[69] |
C. J. Tomlin, I. Mitchell, A. Bayen and M. Oishi, Computational techniques for the verification and control of hybrid systems, Proceedings of the IEEE 91, Springer-Verlag, 7 (2003), 986–1001. Google Scholar |
[70] |
V. A. Tsachouridis, Numerical analysis of $H_{\infty} $ filter for system parameter identification, Int. J. Modelling, Identification and Control, 30 (2018), 163-183. Google Scholar |
[71] |
University of Florida Sparse Matrix Collection, 2019. Available from: https://www.cise.ufl.edu/research/sparse/matrices/list_by_id.html Google Scholar |
[72] |
G. Wang, Y. Wei and S. Qiao, Generalized Inverses: Theory and Computations, Springer, Singapore: Science Press Beijing, Beijing, 2018.
doi: 10.1007/978-981-13-0146-9. |
[73] |
Y. Wei, P. Stanimirovic and M. Petkovic, Numerical and Symbolic Computations of Generalized Inverses, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018. |
[74] |
J. Wilkinson, Rounding Errors in Algebraic Processes, Prentice Hall, Englewood Cliff, NJ, 1963. |
[75] |
H. Wolkovicz and G. P. H. Stayan,
Bounds for eigenvalues using traces, Linear Algebra and Its Applications, 29 (1980), 471-506.
doi: 10.1016/0024-3795(80)90258-X. |
[76] |
P. Xie, H. Xiang and Y. Wei, Randomized algorithms for total least squares problems, Numerical Linear Algebra with Applications, 26 (2019), e2219, Available from: https://doi.org/10.1002/nla.2219
doi: 10.1002/nla.2219. |
show all references
References:
[1] |
AAFLIB - An Affine Arithmetic C++, 2019. Available from: http://aaflib.sourceforge.net. Google Scholar |
[2] |
R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. H. Ho, X. Nicollin, A. Olivero, J. Sifakis and S. Yovine,
The algorithmic analysis of hybrid systems, Theoretical Computer Science, 138 (1995), 3-34.
doi: 10.1016/0304-3975(94)00202-T. |
[3] |
R. Alur, T. A. Henzinger, G. Lafferriere and G. Pappas, Discrete abstractions of hybrid systems, Proceedings of the IEEE 88, 7 (2000), 971-984. Google Scholar |
[4] |
R. Alur, T. Dang and F. Ivancic,
Counter example-guided predicate abstraction of hybrid systems, Theoretical Computer Science, 354 (2006), 250-271.
doi: 10.1016/j.tcs.2005.11.026. |
[5] |
Y. Annapureddy, C. Liu, G. Fainekos and S. Sankaranarayanan, S-TaLiRo: A tool for temporal logic falsification for hybrid systems, Proc. of Tools and Algorithms for the Construction and Analysis of Systems, (2011), 254–257. Google Scholar |
[6] |
E. Asarin, T. Dang and O. Maler, The d/dt tool for verification of hybrid systems, Int. Conf. on Computer Aided Verification, LNCS, Springer-Verlag, (2002), 365–350. Google Scholar |
[7] |
A. Ben-Israel and D. Cohen,
On iterative computation of generalized inverses and associated projections, SIAM J. Numer. Anal., 3 (1966), 410-419.
doi: 10.1137/0703035. |
[8] |
A. Ben-Israel and T. N. E. Greville, Generalized Inverses Theory and Applications, Springer, 2003, ISBN 978-0-387-00293-4. |
[9] |
A. Bhatia and E. Frazzoli, Incremental search methods for reachability analysis of continuous and hybrid systems, Hybrid Systems: Computation and Control, LNCS, Springer-Verlag, 2993 (2004), 142–156. Google Scholar |
[10] |
O. Botchkarev and S. Tripakis, Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations, Hybrid Systems: Computation and Control, LNCS, Springer-Verlag, 1790 (2000), 73–78. Google Scholar |
[11] |
M. S. Branicky, M. M. Curtiss, J. Levine and S. Morgan, Sampling-based planning, control, and verification of hybrid systems, Control Theory and Applications, 153 (2006), 575-590. Google Scholar |
[12] |
C. Bu, X. Zhang, J. Zhou, W. Wang and Y. Wei,
The inverse, rank and product of tensors, Linear Algebra and Its Applications, 446 (2014), 269-280.
doi: 10.1016/j.laa.2013.12.015. |
[13] |
X. Chen, E. Abraham and S. Sankaranarayanan, Flow* An analyzer for non-linear hybrid systems, Proc. of CAV13, LNCS, Springer, 8044 (2013), 258–263.
doi: 10.1007/978-3-642-39799-8_18. |
[14] |
X. Chen, Reachability Analysis of Non-Linear Hybrid Systems Using Taylor Models, PhD Thesis in RWTH Aachen University, Germany, 2015. Google Scholar |
[15] |
C. Chutinan and B. H. Krogh,
Computational techniques for hybrid system verification, IEEE Transactions on Automatic Control, 48 (2003), 64-75.
doi: 10.1109/TAC.2002.806655. |
[16] |
E. M Clarke, W. Klieber, M. Novcek and P. Zuliani, Model checking and the state explosion problem, Tools for Practical Software Verification, Springer, (2012), 1–30. Google Scholar |
[17] |
E. M. Clarke, Th. A. Henzinger, H. Veith and R. Bloem, Handbook of Model Checking, Springer International Publishing, 2018.
doi: 10.1007/978-3-319-10575-8. |
[18] |
J-J. Climent, N. Thome and Y. Wei,
A geometrical approach on generalized inverses by Neumann-type series, Linear Algebra and Its Applications, 1 (2001), 533-540.
doi: 10.1016/S0024-3795(01)00309-3. |
[19] |
B. Datta, Numerical Methods for Linear Control Systems, Elsevier Academic Press, 2004.
![]() |
[20] |
M. Daumas, D. Lester and C. Muoz,
Verified real number calculations, A library for interval arithmetic, IEEE Transactions on Computers, 58 (2009), 226-237.
doi: 10.1109/TC.2008.213. |
[21] |
A. Donze, Breach, a toolbox for verification and parameter synthesis of hybrid systems, Proc. of Computer Aided Verification, (2010), 167–170. Google Scholar |
[22] |
P. Duggirala, S. Mitra, M. Viswanathan and M. Potok, C2E2 A verification tool for Stateflow models, Proc. of TACAS15, LNCS, Springer, 9035 (2015), 68–82. Google Scholar |
[23] |
J. M. Esposito, J. Kim and V. Kumar, Adaptive RRTs for validating hybrid robotic control systems, Workshop on Algorithmic Foundations of Robotics, Zeist, Netherlands, (2004), 107–132. Google Scholar |
[24] |
J. Kim, J. M. Esposito and V. Kumar, An RRT-based algorithm for testing and validating multi-robot controllers, Robotics: Science and Systems, Boston, MA, (2005), 249–256. Google Scholar |
[25] |
L. H. de Figueiredo and J. Stolfi,
Affine arithmetic: concepts and applications, Numerical Algorithms, 37 (2004), 147-158.
doi: 10.1023/B:NUMA.0000049462.70970.b6. |
[26] |
G. Frehse, C. L. Guernic, A. Donz, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang and O. Maler, SpaceEx Scalable verification of hybrid systems, Proc. of CAV11, LNCS, Springer, 6806 (2011), 379–395.
doi: 10.1007/978-3-642-22110-1_30. |
[27] |
G. Frehse, R. Kateja and C. Le Guernic,
Flowpipe approximation and clustering in space-time, Proc. of HSCC13, 9035 (2013), 203-212.
doi: 10.1145/2461328.2461361. |
[28] |
M. Gameiro and P. Manolios, Formally verifying an algorithm based on interval arithmetic for checking transversality, Workshop on ACL2 Prover and Applications, 2004. Google Scholar |
[29] |
N. Giorgetti, G.J. Pappas and A. Bemporad, Bounded model checking for hybrid dynamical systems, IEEE Conference on Decision and Control, Seville, Spain, (2005), 672–677. Google Scholar |
[30] |
C. Le Guernic, Reachability Analysis of Hybrid Systems with Linear Continuous Dynamics, PhD Thesis in Universit Joseph-Fourier-Grenoble I, France, 2009. Google Scholar |
[31] |
T. Henzinger, P. Kopke, A. Puri and P. Varaiya, What's decidable about hybrid automata?, ACM Symposium on Theory of Computing, (1995), 273–282.
doi: 10.1016/0895-7177(96)00072-6. |
[32] |
T. Henzinger, The theory of hybrid automata, Symposium on Logic in Computer Science, (1996), 278–292.
doi: 10.1109/LICS.1996.561342. |
[33] |
F. Immler, Tool presentation Isabelle/hol for reachability analysis of continuous systems, in ARCH14-15, 1st and 2nd International Workshop on Applied veRification for Continuous and Hybrid Systems (eds. M. Frehse and M. Althoff), Academic Press, (1971), 33–75. EPiC Series in Computer Science, 34 (2015), 180–187. |
[34] |
A. A. A. Julius, G. E. Fainekos, M. Anand, I. Lee and G. J. Pappas, IRobust test generation and coverage for hybrid systems, Hybrid Systems: Computation and Control, LNCS, Springer-Verlag, 4416 (2007), 329–342. Google Scholar |
[35] |
S. Kong, S. Gao and W. Chen, Reachability analysis for hybrid systems, Proc. of TACAS15, LNCS, Springer, 9035 (2015), 200–205. Google Scholar |
[36] |
M. Konstantinov, D. Gu, V. Mehrmann and P. Petkov, Perturbation Theory for Matrix Equations, 2$^{nd}$ edition, Elsevier, Amsterdam, 2003, ISBN-9780444513151. |
[37] |
G. A. Kumar, T. V. Subbareddy, B. M. Redd, N. Raju and V. Elamaran, An approach to design a matrix inversion hardware module using FPGA, Int. Conf. on Control, Instrumentation, Comm. and Comput. Technologies, 230 (2014), 87-90. Google Scholar |
[38] |
G. Lafferriere, G. Pappas and S. Yovine, A new class of decidable hybrid systems, Hybrid Systems: Computation and Control, LNCS, 1569 (1999), 137-151. Google Scholar |
[39] |
LAPACK-Linear Algebra PACKage, 2019. Available from: http://www.netlib.org/lapack/. Google Scholar |
[40] |
W. Levine, The Control Handbook, IEEE Press, 1996. Google Scholar |
[41] |
C. Livadas and N. Lynch, A new class of decidable hybrid systems, Hybrid Systems: Computation and Control, LNCS, 1386 (1998), 253-272. Google Scholar |
[42] |
Matlab-Mathworks, 2019. Available from: https://www.mathworks.com Google Scholar |
[43] |
F. Messine and A. Touhami,
A general reliable quadratic form: an extension of affine arithmetic, Reliable Computing, 12 (2006), 171-192.
doi: 10.1007/s11155-006-7217-4. |
[44] |
D. Monniaux, Toward verifiably correct control implementations, The impact of control technology Part 2: Challenges for control research, Report of IEEE Control Systems Society, 2nd Ed, 2011. Available from: http://ieeecss.org/general/IoCT2-report. Google Scholar |
[45] |
D. Monniaux and A. Mine, Verification of control system software, the impact of control technology, Part 1: Success stories for control, Report of IEEE Control Systems Society, 2nd Ed, 2011. Available from: http://ieeecss.org/general/IoCT2-report. Google Scholar |
[46] |
R. E. Moore, Methods and Applications of Interval Analysis, SIAM Studies in Applied and Numerical Mathematics, Philadelphia, 1987, ISBN-10: 0898711614. |
[47] |
R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis, SIAM, 2009.
doi: 10.1137/1.9780898717716. |
[48] |
C. Munoz and D. Lester, Real number calculations and theorem proving, 18th Int. Conf. on Theorem Proving in Higher Order Logics, England, (2005), 239–254.
doi: 10.1007/11541868_13. |
[49] |
T. Nahhal and T. Dang, Test coverage for continuous and hybrid systems, Int. Conf. on Computer Aided Verification, LNCS, 4590 (2007), 449-462. Google Scholar |
[50] |
I. Pasca, Formal Verifcation for Numerical Methods, PhD Thesis in Universit Nice Sophia Antipolis, France, 2010. Google Scholar |
[51] |
P. Petkov, M. Konstantinov and N. Christov, Computational Methods for Linear Control Systems, 2$^{nd}$ edition, Prentice- Hall, Hemel Hempstead, 1991, ISBN-9780444513151. Google Scholar |
[52] |
M. D. Petkovic and P. S. Stanimirovic,
Generalized matrix inversion is not harder than matrix multiplication, J. Comput. and Applied Math., 230 (2009), 270-282.
doi: 10.1016/j.cam.2008.11.012. |
[53] |
M. D. Petkovic and P. S. Stanimirovic,
Iterative method for computing Moore-Penrose inverse based on Penrose equations, J. Comput. and Applied Math., 235 (2011), 1604-1613.
doi: 10.1016/j.cam.2010.08.042. |
[54] |
M. S. Petkovic,
Iterative methods for bounding the inverse of a matrix (a survey), FILOMAT Nis, Algebra Logic & Discrete Mathematics, 9 (1995), 543-577.
|
[55] |
E. Plaku, L. Kavraki and M. Vardi, Hybrid systems: from verification to falsification by combining motion planning and discrete search, Formal Methods in System Design, 34 (2009), 157-182. Google Scholar |
[56] |
A. Platzer and J-D Quesel, KeYmaera a hybrid theorem prover for hybrid systems (system description), Automated Reasoning, IJCAR 2008, Lecture Notes in Computer Science (eds. M. Frehse and M. AlthoffArmando A., Baumgartner P., Dowek G.), Springer Berlin Heidelberg, 5195 (2008), 163–183.
doi: 10.1007/978-3-540-71070-7_15. |
[57] |
A. Puri, Theory of Hybrid Systems and Discrete Event Systems, PhD Thesis in University of California, Berkeley, 1995. Google Scholar |
[58] |
PyInterval - Interval arithmetic in Python, 2019. Available from: https://github.com/taschini/pyinterval Google Scholar |
[59] |
S. Qiao, X. Wang and Y. Wei,
Two finite-time convergent Zhang neural network models for time-varying complex matrix Drazin inverse, Linear Algebra and Its Applications, 542 (2018), 101-117.
doi: 10.1016/j.laa.2017.03.014. |
[60] |
Y. Rahman, A. Xie and S. Bernstein, Retrospective cost adaptive control: pole placement, frequency response, and connections with LQG control, IEEE Control System Magazine, (2017), 28–69.
doi: 10.1109/MCS.2017.2718825. |
[61] |
S. Ratschan and Z. She, Safety verification of hybrid systems by constraint propagation based abstraction refinement, ACM Transactions on Embedded Computing Systems, 6 (2007), Article No. 8.
doi: 10.1145/1210268.1210276. |
[62] |
RTCA Formal Methods Supplement to DO-178C and DO-278A, RTCA DO-333, December 13, 2011. Google Scholar |
[63] |
RTCA, Software Considerations in Airborne Systems and Equipment Certification, RTCA DO-178C, December 13, 2011. Google Scholar |
[64] |
S. Schupp, E. Abraham, X. Chen, I. B. Makhlouf, G. Frehse, S. Sankaranarayanan and S. Kowalewski, Current challenges in the verification of hybrid systems, Workshop on Design, Modeling, and Evaluation of Cyber Physical Systems, (2015), 8–24. Google Scholar |
[65] |
S. Schupp and E. Abraham, Efficient dynamic error reduction for hybrid systems reachability analysis, Proc. of the 24th International Conference on Tools and Algorithms for the Construction and Analysis of Systems TACAS18, LNCS, Springer, 2018. Google Scholar |
[66] |
B. I. Silva and B. H. Krogh, Formal verification of hybrid systems using CheckMate: A case study, American Control Conference, (2000), 1679–1683. Google Scholar |
[67] |
G. Stewart and J. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990. |
[68] |
O. Stursberg and B. H. Krogh, Efficient representation and computation of reachable sets for hybrid systems, Hybrid Systems: Computation and Control, LNCS, 2623 (2003), 482-497. Google Scholar |
[69] |
C. J. Tomlin, I. Mitchell, A. Bayen and M. Oishi, Computational techniques for the verification and control of hybrid systems, Proceedings of the IEEE 91, Springer-Verlag, 7 (2003), 986–1001. Google Scholar |
[70] |
V. A. Tsachouridis, Numerical analysis of $H_{\infty} $ filter for system parameter identification, Int. J. Modelling, Identification and Control, 30 (2018), 163-183. Google Scholar |
[71] |
University of Florida Sparse Matrix Collection, 2019. Available from: https://www.cise.ufl.edu/research/sparse/matrices/list_by_id.html Google Scholar |
[72] |
G. Wang, Y. Wei and S. Qiao, Generalized Inverses: Theory and Computations, Springer, Singapore: Science Press Beijing, Beijing, 2018.
doi: 10.1007/978-981-13-0146-9. |
[73] |
Y. Wei, P. Stanimirovic and M. Petkovic, Numerical and Symbolic Computations of Generalized Inverses, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018. |
[74] |
J. Wilkinson, Rounding Errors in Algebraic Processes, Prentice Hall, Englewood Cliff, NJ, 1963. |
[75] |
H. Wolkovicz and G. P. H. Stayan,
Bounds for eigenvalues using traces, Linear Algebra and Its Applications, 29 (1980), 471-506.
doi: 10.1016/0024-3795(80)90258-X. |
[76] |
P. Xie, H. Xiang and Y. Wei, Randomized algorithms for total least squares problems, Numerical Linear Algebra with Applications, 26 (2019), e2219, Available from: https://doi.org/10.1002/nla.2219
doi: 10.1002/nla.2219. |





[1] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[2] |
Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193 |
[3] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[4] |
Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781 |
[5] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[6] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[7] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[8] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
[9] |
Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024 |
[10] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[11] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446 |
[12] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[13] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[14] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[15] |
Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2020056 |
[16] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[17] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[18] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[19] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[20] |
Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021038 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]