• Previous Article
    A new type of quasi-newton updating formulas based on the new quasi-newton equation
  • NACO Home
  • This Issue
  • Next Article
    Formal analysis of the Schulz matrix inversion algorithm: A paradigm towards computer aided verification of general matrix flow solvers
June  2020, 10(2): 207-225. doi: 10.3934/naco.2019048

Optimal control of an HIV model with CTL cells and latently infected cells

Laboratory of Mathematics and Applications, Faculty of Sciences and, Techniques, Hassan II University of Casablanca, PO Box 146, Mohammedia, Morocco

* Corresponding author: Jaouad Danane. Email: jaouaddanane@gmail.com

Received  February 2019 Revised  July 2019 Published  September 2019

This paper deals with an optimal control problem for an human immunodeficiency virus (HIV) infection model with cytotoxic T-lymphocytes (CTL) immune response and latently infected cells. The model under consideration describes the interaction between the uninfected cells, the latently infected cells, the productively infected cells, the free viruses and the CTL cells. The two treatments represent the efficiency of drug treatment in inhibiting viral production and preventing new infections. Existence of the optimal control pair is established and the Pontryagin's minimum principle is used to characterize these two optimal controls. The optimality system is derived and solved numerically using the forward and backward difference approximation. Finally, numerical simulations are performed in order to show the role of optimal therapy in controlling the infection severity.

Citation: Jaouad Danane, Karam Allali. Optimal control of an HIV model with CTL cells and latently infected cells. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 207-225. doi: 10.3934/naco.2019048
References:
[1]

B. M. Adams, H. T. Banks, H. D. Kwon and H. T. Tran, Dynamic multidrug therapies for HIV: optimal and STI control approaches, Math. Biosci. Eng., 1 (2004), 223–241. doi: 10.3934/mbe.2004.1.223.

[2]

K. Allali, J. Danane and Y. Kuang, Global analysis for an HIV infection model with CTL immune response and infected cells in eclipse phase, Applied Sciences, 7 (2017), 861. doi: 10.3390/app7080861.

[3]

W. BlattnerR. C. Gallo and H. M. Temin, HIV causes AIDS, Science, 241 (1988), 515-516. 

[4]

E. S. DaarT. MoudgilR. D. Meyer and D. D. Ho, Transient highlevels of viremia in patients with primary human immunodeficiency virus type 1, New Engl. J. Med., 324 (1991), 961-964. 

[5]

K. R. FisterS. Lenhart and J. S. McNally, Optimizing chemotherapy in an HIV model, Electron J. Differ. Equ., 32 (1998), 1-12. 

[6]

W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, Berlin, 1975.

[7]

J. O. Kahn and B. D. Walker, Acute human immunodeficiency virus type 1 infection, New Engl. J. Med., 339 (1998), 33-39. 

[8]

G. R. KaufmannP. CunninghamA. D. KelleherJ. ZaudersA. CarrJ. VizzardM. Law and D. A. Cooper, Patterns of viral dynamics during primary human immunodeficiency virus type 1 infection, J. Infec. Dis., 178 (1998), 1812-1815. 

[9]

C. LiuR. Loxton and K. L. Teo, A computational method for solving time-delay optimal control problems with free terminal time, Systems and Control Letters, 72 (2014), 53-60.  doi: 10.1016/j.sysconle.2014.07.001.

[10]

C. LiuZ. GongH. W. J. Lee and K. L. Teo, Robust bi-objective optimal control of 1, 3-propanediol microbial batch production process, Journal of Process Control, 78 (2018), 170-182.  doi: 10.1016/j.jprocont.2018.10.001.

[11]

J. M. Orellana, Optimal drug scheduling for HIV therapy effciency improvement, Biomed. Signal Process, 6 (2011), 379-386. 

[12]

G. Pachpute and S. P. Chakrabarty, Dynamics of hepatitis C under optimal therapy and sampling based analysis, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2202-2212.  doi: 10.1016/j.cnsns.2012.12.032.

[13]

L. Pontryagin, V. Boltyanskii, et al., The Mathematical Theory of Optimal Processes, Wiley, New York, 1962.

[14]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79. 

[15]

T. SchackerA. CollierJ. HughesT. Shea and L. Corey, Clinical and epidemiologic features of primary HIV infection, Ann. Int. Med., 125 (1996), 257-264. 

[16]

Q. SunL. Min and Y. Kuang, Global stability of infection-free state and endemic infection state of a modified human immunodeficiency virus infection model, IET Systems Biology, 9 (2015), 95-103. 

[17]

Q. Sun and L. Min, Dynamics analysis and simulation of a modified HIV infection model with a saturated infection rate, Computational and Mathematical Methods in Medicine, (2014), Article ID 145162, 14 pages. doi: 10.1155/2014/145162.

[18]

G. W. Swan, Role of optimal control theory in cancer chemotherapy, Math. Biosci., 101 (1990), 237-284. 

[19]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, 1991.

[20]

X. WangA. Elaiw and X. Song, Global properties of a delayed HIV infection model with CTL immune response, Applied Mathematics and Computation, 218 (2012), 9405-9414.  doi: 10.1016/j.amc.2012.03.024.

[21]

X. WangY. Tao and X. Song, Global stability of a virus dynamics model with Beddington-DeAngelis incidence rate and CTL immune response, Nonlinear Dynamics, 66 (2011), 825-830.  doi: 10.1007/s11071-011-9954-0.

[22]

World Health Organization, HIV/AIDS key facts, Available from http://www.who.int/mediacentre/factsheets/fs360/en/index.html.

[23]

H. ZhuY. Luo and M. Chen, Stability and Hopf bifurcation of a HIV infection model with CTL-response delay, Computers and Mathematics with Applications, 62 (2011), 3091-3102.  doi: 10.1016/j.camwa.2011.08.022.

show all references

References:
[1]

B. M. Adams, H. T. Banks, H. D. Kwon and H. T. Tran, Dynamic multidrug therapies for HIV: optimal and STI control approaches, Math. Biosci. Eng., 1 (2004), 223–241. doi: 10.3934/mbe.2004.1.223.

[2]

K. Allali, J. Danane and Y. Kuang, Global analysis for an HIV infection model with CTL immune response and infected cells in eclipse phase, Applied Sciences, 7 (2017), 861. doi: 10.3390/app7080861.

[3]

W. BlattnerR. C. Gallo and H. M. Temin, HIV causes AIDS, Science, 241 (1988), 515-516. 

[4]

E. S. DaarT. MoudgilR. D. Meyer and D. D. Ho, Transient highlevels of viremia in patients with primary human immunodeficiency virus type 1, New Engl. J. Med., 324 (1991), 961-964. 

[5]

K. R. FisterS. Lenhart and J. S. McNally, Optimizing chemotherapy in an HIV model, Electron J. Differ. Equ., 32 (1998), 1-12. 

[6]

W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, Berlin, 1975.

[7]

J. O. Kahn and B. D. Walker, Acute human immunodeficiency virus type 1 infection, New Engl. J. Med., 339 (1998), 33-39. 

[8]

G. R. KaufmannP. CunninghamA. D. KelleherJ. ZaudersA. CarrJ. VizzardM. Law and D. A. Cooper, Patterns of viral dynamics during primary human immunodeficiency virus type 1 infection, J. Infec. Dis., 178 (1998), 1812-1815. 

[9]

C. LiuR. Loxton and K. L. Teo, A computational method for solving time-delay optimal control problems with free terminal time, Systems and Control Letters, 72 (2014), 53-60.  doi: 10.1016/j.sysconle.2014.07.001.

[10]

C. LiuZ. GongH. W. J. Lee and K. L. Teo, Robust bi-objective optimal control of 1, 3-propanediol microbial batch production process, Journal of Process Control, 78 (2018), 170-182.  doi: 10.1016/j.jprocont.2018.10.001.

[11]

J. M. Orellana, Optimal drug scheduling for HIV therapy effciency improvement, Biomed. Signal Process, 6 (2011), 379-386. 

[12]

G. Pachpute and S. P. Chakrabarty, Dynamics of hepatitis C under optimal therapy and sampling based analysis, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2202-2212.  doi: 10.1016/j.cnsns.2012.12.032.

[13]

L. Pontryagin, V. Boltyanskii, et al., The Mathematical Theory of Optimal Processes, Wiley, New York, 1962.

[14]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79. 

[15]

T. SchackerA. CollierJ. HughesT. Shea and L. Corey, Clinical and epidemiologic features of primary HIV infection, Ann. Int. Med., 125 (1996), 257-264. 

[16]

Q. SunL. Min and Y. Kuang, Global stability of infection-free state and endemic infection state of a modified human immunodeficiency virus infection model, IET Systems Biology, 9 (2015), 95-103. 

[17]

Q. Sun and L. Min, Dynamics analysis and simulation of a modified HIV infection model with a saturated infection rate, Computational and Mathematical Methods in Medicine, (2014), Article ID 145162, 14 pages. doi: 10.1155/2014/145162.

[18]

G. W. Swan, Role of optimal control theory in cancer chemotherapy, Math. Biosci., 101 (1990), 237-284. 

[19]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, 1991.

[20]

X. WangA. Elaiw and X. Song, Global properties of a delayed HIV infection model with CTL immune response, Applied Mathematics and Computation, 218 (2012), 9405-9414.  doi: 10.1016/j.amc.2012.03.024.

[21]

X. WangY. Tao and X. Song, Global stability of a virus dynamics model with Beddington-DeAngelis incidence rate and CTL immune response, Nonlinear Dynamics, 66 (2011), 825-830.  doi: 10.1007/s11071-011-9954-0.

[22]

World Health Organization, HIV/AIDS key facts, Available from http://www.who.int/mediacentre/factsheets/fs360/en/index.html.

[23]

H. ZhuY. Luo and M. Chen, Stability and Hopf bifurcation of a HIV infection model with CTL-response delay, Computers and Mathematics with Applications, 62 (2011), 3091-3102.  doi: 10.1016/j.camwa.2011.08.022.

Figure 1.  Surface plot of $ R_0 $ (left) and contour plot of $ R_0 $ (right)
Figure 2.  The uninfected cells as function of time
Figure 3.  The latently infected cells as function of time
Figure 4.  The infected cells as function of time
Figure 5.  The HIV virus as function of time
Figure 6.  The CTL response as function of time
Figure 7.  The optimal control $ u_1 $ (left) and the optimal control $ u_2 $ (right) versus time
Figure 8.  The optimal control $ u_1 $ (left) and the optimal control $ u_2 $ (right) versus time
Figure 9.  The behavior of the infection dynamics
[1]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311

[2]

Cristiana J. Silva, Delfim F. M. Torres. A TB-HIV/AIDS coinfection model and optimal control treatment. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4639-4663. doi: 10.3934/dcds.2015.35.4639

[3]

H. T. Banks, Robert Baraldi, Karissa Cross, Kevin Flores, Christina McChesney, Laura Poag, Emma Thorpe. Uncertainty quantification in modeling HIV viral mechanics. Mathematical Biosciences & Engineering, 2015, 12 (5) : 937-964. doi: 10.3934/mbe.2015.12.937

[4]

Cristiana J. Silva, Delfim F. M. Torres. Modeling and optimal control of HIV/AIDS prevention through PrEP. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 119-141. doi: 10.3934/dcdss.2018008

[5]

Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler. Dynamics of tumor-immune interaction under treatment as an optimal control problem. Conference Publications, 2011, 2011 (Special) : 971-980. doi: 10.3934/proc.2011.2011.971

[6]

Aiping Wang, Michael Y. Li. Viral dynamics of HIV-1 with CTL immune response. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2257-2272. doi: 10.3934/dcdsb.2020212

[7]

Hee-Dae Kwon, Jeehyun Lee, Myoungho Yoon. An age-structured model with immune response of HIV infection: Modeling and optimal control approach. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 153-172. doi: 10.3934/dcdsb.2014.19.153

[8]

Filipe Rodrigues, Cristiana J. Silva, Delfim F. M. Torres, Helmut Maurer. Optimal control of a delayed HIV model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 443-458. doi: 10.3934/dcdsb.2018030

[9]

Oluwaseun Sharomi, Chandra N. Podder, Abba B. Gumel, Baojun Song. Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Mathematical Biosciences & Engineering, 2008, 5 (1) : 145-174. doi: 10.3934/mbe.2008.5.145

[10]

Miaomiao Gao, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi, Bashir Ahmad. Dynamics of a stochastic HIV/AIDS model with treatment under regime switching. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3177-3211. doi: 10.3934/dcdsb.2021181

[11]

Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani. Optimal control of normalized SIMR models with vaccination and treatment. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 79-99. doi: 10.3934/dcdsb.2018006

[12]

M. Teresa T. Monteiro, Isabel Espírito Santo, Helena Sofia Rodrigues. An optimal control problem applied to a wastewater treatment plant. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 587-601. doi: 10.3934/dcdss.2021153

[13]

Brandy Rapatski, Juan Tolosa. Modeling and analysis of the San Francisco City Clinic Cohort (SFCCC) HIV-epidemic including treatment. Mathematical Biosciences & Engineering, 2014, 11 (3) : 599-619. doi: 10.3934/mbe.2014.11.599

[14]

Neha Murad, H. T. Tran, H. T. Banks, R. A. Everett, Eric S. Rosenberg. Immunosuppressant treatment dynamics in renal transplant recipients: an iterative modeling approach. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2781-2797. doi: 10.3934/dcdsb.2018274

[15]

Jaouad Danane. Optimal control of viral infection model with saturated infection rate. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 363-375. doi: 10.3934/naco.2020031

[16]

Linghui Yu, Zhipeng Qiu, Ting Guo. Modeling the effect of activation of CD4$^+$ T cells on HIV dynamics. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4491-4513. doi: 10.3934/dcdsb.2021238

[17]

Cristiana J. Silva, Delfim F. M. Torres. Errata to "Modeling and optimal control of HIV/AIDS prevention through PrEP", Discrete Contin. Dyn. Syst. Ser. S 11 (2018), no. 1,119–141. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1619-1621. doi: 10.3934/dcdss.2020343

[18]

Joaquim P. Mateus, Paulo Rebelo, Silvério Rosa, César M. Silva, Delfim F. M. Torres. Optimal control of non-autonomous SEIRS models with vaccination and treatment. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1179-1199. doi: 10.3934/dcdss.2018067

[19]

Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009

[20]

Cristiana J. Silva, Delfim F. M. Torres. Optimal control strategies for tuberculosis treatment: A case study in Angola. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 601-617. doi: 10.3934/naco.2012.2.601

 Impact Factor: 

Metrics

  • PDF downloads (358)
  • HTML views (582)
  • Cited by (0)

Other articles
by authors

[Back to Top]