# American Institute of Mathematical Sciences

June  2020, 10(2): 227-235. doi: 10.3934/naco.2019049

## A new type of quasi-newton updating formulas based on the new quasi-newton equation

 Department of Mathematics, College of Computers Sciences and Mathematics, University of Mosul, Iraq

* Corresponding author: Basim A. Hassan

Received  February 2019 Revised  July 2019 Published  September 2019

The quasi-Newton equation is the very foundation of an assortment of the quasi-Newton methods. Therefore, by using the offered alternative equation, we derive the modified BFGS quasi-Newton updating formulas. In this paper, a new y-technique has been introduced to modify the secant equation of the quasi-Newton methods. Prove the global convergence of this algorithm is associated with a line search rule. The numerical results explain that the offered method is effectual for the known test problems.

Citation: Basim A. Hassan. A new type of quasi-newton updating formulas based on the new quasi-newton equation. Numerical Algebra, Control & Optimization, 2020, 10 (2) : 227-235. doi: 10.3934/naco.2019049
##### References:

show all references

##### References:
Some modifications of QN-equations
 Author(s) QN conditions Ref. Powell $B_{k+1}s_k=\tilde{y}_k= \varphi_k y_k +(1-\varphi_k)B_ks_k$ [8] Li and Fukushima $B_{k+1}s_k=\tilde{y}_k= y_k +t_ks_k, t_k \le 10^{-6}$ [5] Wei, Li, and Qi $B_{k+1}s_k=\tilde{y}_k= y_k +\frac{2(f_k-f_{k+1})+(g_{k+1}+g_k)^Ts_k}{\Vert s_k \Vert^2} s_k$ [9] Zhang, Deng, and Chen $B_{k+1}s_k=\tilde{y}_k= y_k +\frac{6(f_k-f_{k+1})+3(g_{k+1}+g_k)^Ts_k}{\Vert s_k \Vert^2} s_k$ [18] Yuan and Wei $B_{k+1}s_k=\tilde{y}_k= y_k +\frac{max(0, 2(f_k-f_{k+1})+(g_{k+1}+g_k)^Ts_k}{\Vert s_k \Vert^2} s_k$ [14] Yuan, Wei and Wu $B_{k+1}s_k=\tilde{y}_k= y_k +\frac{max(0, 6(f_k-f_{k+1})+3(g_{k+1}+g_k)^Ts_k}{\Vert s_k \Vert^2} s_k$ [17]
 Author(s) QN conditions Ref. Powell $B_{k+1}s_k=\tilde{y}_k= \varphi_k y_k +(1-\varphi_k)B_ks_k$ [8] Li and Fukushima $B_{k+1}s_k=\tilde{y}_k= y_k +t_ks_k, t_k \le 10^{-6}$ [5] Wei, Li, and Qi $B_{k+1}s_k=\tilde{y}_k= y_k +\frac{2(f_k-f_{k+1})+(g_{k+1}+g_k)^Ts_k}{\Vert s_k \Vert^2} s_k$ [9] Zhang, Deng, and Chen $B_{k+1}s_k=\tilde{y}_k= y_k +\frac{6(f_k-f_{k+1})+3(g_{k+1}+g_k)^Ts_k}{\Vert s_k \Vert^2} s_k$ [18] Yuan and Wei $B_{k+1}s_k=\tilde{y}_k= y_k +\frac{max(0, 2(f_k-f_{k+1})+(g_{k+1}+g_k)^Ts_k}{\Vert s_k \Vert^2} s_k$ [14] Yuan, Wei and Wu $B_{k+1}s_k=\tilde{y}_k= y_k +\frac{max(0, 6(f_k-f_{k+1})+3(g_{k+1}+g_k)^Ts_k}{\Vert s_k \Vert^2} s_k$ [17]
Comparison of different BFGS-algorithms with different test functions and different dimensions
 P.No. n BFGS algorithm BBFGS with $u_k=y_k$ BBFGS with $u_k=g_{k+1}$ NI NF NI NF NI NF 1 2 35 140 36 124 8 29 2 2 9 26 8 23 5 16 3 2 43 166 34 123 3 12 4 2 3 30 3 30 3 30 5 2 15 50 15 48 5 17 6 2 2 27 2 27 2 27 7 3 34 113 26 86 7 20 8 3 16 54 15 51 6 18 9 3 2 4 2 4 2 4 10 3 2 27 2 27 2 27 11 3 2 27 2 27 2 27 12 4 20 60 20 60 5 17 13 4 19 61 24 73 4 13 14 4 21 65 23 72 4 10 15 4 17 54 16 49 5 17 16 5 2 27 2 27 2 27 17 6 25 72 33 101 4 12 18 11 3 31 3 31 3 31 19 20 31 102 33 103 4 13 20 400 64 209 91 297 5 17 21 400 2 27 2 27 2 27 22 200 2 5 2 5 2 5 23 100 2 27 2 27 2 27 24 500 9 33 8 28 10 31 25 500 2 4 2 4 2 4 26 500 6 16 7 19 5 14 27 500 57 281 16 114 5 17 28 500 2 4 2 4 2 4 29 500 3 7 3 7 3 7 30 500 3 7 3 7 3 7 Total 453 1756 437 1625 117 527
 P.No. n BFGS algorithm BBFGS with $u_k=y_k$ BBFGS with $u_k=g_{k+1}$ NI NF NI NF NI NF 1 2 35 140 36 124 8 29 2 2 9 26 8 23 5 16 3 2 43 166 34 123 3 12 4 2 3 30 3 30 3 30 5 2 15 50 15 48 5 17 6 2 2 27 2 27 2 27 7 3 34 113 26 86 7 20 8 3 16 54 15 51 6 18 9 3 2 4 2 4 2 4 10 3 2 27 2 27 2 27 11 3 2 27 2 27 2 27 12 4 20 60 20 60 5 17 13 4 19 61 24 73 4 13 14 4 21 65 23 72 4 10 15 4 17 54 16 49 5 17 16 5 2 27 2 27 2 27 17 6 25 72 33 101 4 12 18 11 3 31 3 31 3 31 19 20 31 102 33 103 4 13 20 400 64 209 91 297 5 17 21 400 2 27 2 27 2 27 22 200 2 5 2 5 2 5 23 100 2 27 2 27 2 27 24 500 9 33 8 28 10 31 25 500 2 4 2 4 2 4 26 500 6 16 7 19 5 14 27 500 57 281 16 114 5 17 28 500 2 4 2 4 2 4 29 500 3 7 3 7 3 7 30 500 3 7 3 7 3 7 Total 453 1756 437 1625 117 527
Relative efficiency of the new Algorithms
 BFGS algorithm BBFGS with $u_k=y_k$ BBFGS with $u_k=g_{k+1}$ NI 100% 96.70% 25.82% NF 100% 92.53% 30.01%
 BFGS algorithm BBFGS with $u_k=y_k$ BBFGS with $u_k=g_{k+1}$ NI 100% 96.70% 25.82% NF 100% 92.53% 30.01%
 [1] Shummin Nakayama, Yasushi Narushima, Hiroshi Yabe. Memoryless quasi-Newton methods based on spectral-scaling Broyden family for unconstrained optimization. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1773-1793. doi: 10.3934/jimo.2018122 [2] Yuhong Dai, Nobuo Yamashita. Convergence analysis of sparse quasi-Newton updates with positive definite matrix completion for two-dimensional functions. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 61-69. doi: 10.3934/naco.2011.1.61 [3] Honglan Zhu, Qin Ni, Meilan Zeng. A quasi-Newton trust region method based on a new fractional model. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 237-249. doi: 10.3934/naco.2015.5.237 [4] Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 [5] B. S. Goh, W. J. Leong, Z. Siri. Partial Newton methods for a system of equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 463-469. doi: 10.3934/naco.2013.3.463 [6] Cheng-Dar Liou. Note on "Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method". Journal of Industrial & Management Optimization, 2012, 8 (3) : 727-732. doi: 10.3934/jimo.2012.8.727 [7] Kuo-Hsiung Wang, Chuen-Wen Liao, Tseng-Chang Yen. Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method. Journal of Industrial & Management Optimization, 2010, 6 (1) : 197-207. doi: 10.3934/jimo.2010.6.197 [8] Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019105 [9] Ai-Li Yang, Yu-Jiang Wu. Newton-MHSS methods for solving systems of nonlinear equations with complex symmetric Jacobian matrices. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 839-853. doi: 10.3934/naco.2012.2.839 [10] Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control & Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217 [11] Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457 [12] Qiumei Huang, Xiuxiu Xu, Hermann Brunner. Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5423-5443. doi: 10.3934/dcds.2016039 [13] Ugo Locatelli, Letizia Stefanelli. Quasi-periodic motions in a special class of dynamical equations with dissipative effects: A pair of detection methods. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1155-1187. doi: 10.3934/dcdsb.2015.20.1155 [14] Zhengguang Guo, Sadek Gala. Regularity criterion of the Newton-Boussinesq equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 443-451. doi: 10.3934/cpaa.2012.11.443 [15] Xiaojiao Tong, Shuzi Zhou. A smoothing projected Newton-type method for semismooth equations with bound constraints. Journal of Industrial & Management Optimization, 2005, 1 (2) : 235-250. doi: 10.3934/jimo.2005.1.235 [16] Saeed Ketabchi, Hossein Moosaei, M. Parandegan, Hamidreza Navidi. Computing minimum norm solution of linear systems of equations by the generalized Newton method. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 113-119. doi: 10.3934/naco.2017008 [17] Li-Xia Liu, Sanyang Liu, Chun-Feng Wang. Smoothing Newton methods for symmetric cone linear complementarity problem with the Cartesian $P$/$P_0$-property. Journal of Industrial & Management Optimization, 2011, 7 (1) : 53-66. doi: 10.3934/jimo.2011.7.53 [18] Liping Zhang, Soon-Yi Wu, Shu-Cherng Fang. Convergence and error bound of a D-gap function based Newton-type algorithm for equilibrium problems. Journal of Industrial & Management Optimization, 2010, 6 (2) : 333-346. doi: 10.3934/jimo.2010.6.333 [19] Hongxiu Zhong, Guoliang Chen, Xueping Guo. Semi-local convergence of the Newton-HSS method under the center Lipschitz condition. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 85-99. doi: 10.3934/naco.2019007 [20] Masahiro Kubo. Quasi-subdifferential operators and evolution equations. Conference Publications, 2013, 2013 (special) : 447-456. doi: 10.3934/proc.2013.2013.447

Impact Factor:

## Tools

Article outline

Figures and Tables