September  2020, 10(3): 249-255. doi: 10.3934/naco.2019051

Complex and quaternionic optimization

507-111 Ridelle Avenue, Toronto, Ontario, M6B 1J7, Canada

Received  February 2019 Revised  October 2019 Published  February 2020

We introduce and suggest to research a special class of optimization problems, wherein an objective function is a real-valued complex variables function under constraints, comprising complex-valued complex variables functions: "Complex Optimization". We demonstrate multiple examples to show a rich variety of problems, describing Complex Optimization as an optimization subclass as well as a Mixed Integer-Real-Complex Optimization.

Next, we introduce more general concept: "Quaternionic Optimization" for optimization over quaternion subsets.

Citation: Yuly Shipilevsky. Complex and quaternionic optimization. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 249-255. doi: 10.3934/naco.2019051
References:
[1] L. M. B. C. Campos, Complex Analysis with Applications to Flows and Fields, CRC Press, 2011.   Google Scholar
[2] T. CormenC. LeisersonR. Rivest and C. Stein, Introduction To Algorithms, The MIT Press, Cambridge, 2009.   Google Scholar
[3]

C. A. Floudas and P. M. Pardalos, Encyclopedia of Optimization, Springer, New York, 2009. doi: 10.1016/j.tcs.2009.07.038.  Google Scholar

[4]

I. Frenkel and M. Libine, Quaternionic analysis, representation theory and physics, Advances in Mathematics, 218 (2008), 1806-1877.  doi: 10.1016/j.aim.2008.03.021.  Google Scholar

[5]

R. Hemmecke, M. Köppe, J. Lee and R. Weismantel, Nonlinear integer programming, in 50 Years of Integer Programming 1958–2008: The Early Years and State-of-the-Art Surveys (eds. M. Junger, T. Liebling, D. Naddef, W. Pulleyblank, W. Reinelt, G. Rinaldi, and L. Wolsey), Springer-Verlag, Berlin, (2010), 561–618. Google Scholar

[6]

G. James, Modern Engineering Mathematics, Trans-Atlantic Pubns Inc., 2015. Google Scholar

[7]

I. Kleiner, From numbers to rings: The early history of ring theory, Elem. Math., Birkhäuser, Basel, 53 (1998), 18–35. doi: 10.1007/s000170050029.  Google Scholar

[8]

E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons Inc., 2011.  Google Scholar

[9]

J. QianC. YangA. SchirotzekF. S. Maia and S. Marchesini, Efficient algorithms for ptychographic phase retrieval. Inverse problems and applications, Contemporary Mathematics, 615 (2014), 261-280.  doi: 10.1090/conm/615.  Google Scholar

[10]

V. Scheidemann, Introduction to Complex Analysis in Several Variables, Birkhäuser, 2005.  Google Scholar

[11]

W. T. Shaw, Complex Analysis with Mathematica, Cambridge, 2006. doi: 10.1017/CBO9781316036549.  Google Scholar

[12]

L. Sorber and M. Van Barel, Structured data fusion, IEEE Journal of Selected Topics in Signal Processing, 9 (2015), 586-600.   Google Scholar

[13]

L. SorberM. Van Barel and L. De. Lathauwer, Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank-(l${}_{r}$, l${}_{r}$, 1) terms, and a new generalization, SIAM Journal on Optimization, 23 (2013), 695-720.  doi: 10.1137/120868323.  Google Scholar

[14]

L. SorberM. Van Barel and L. De. Lathauwer, Unconstrained optimization of real functions in complex variables, SIAM Journal on Optimization, 22 (2012), 879-898.  doi: 10.1137/110832124.  Google Scholar

[15]

Y. S. XuQ. Ye and G. X. Meng, Hybrid phase retrieval algorithm based on modified very fast simulated annealing, International Journal of Microwave and Wireless Technologies, 10 (2018), 1072-1080.   Google Scholar

show all references

References:
[1] L. M. B. C. Campos, Complex Analysis with Applications to Flows and Fields, CRC Press, 2011.   Google Scholar
[2] T. CormenC. LeisersonR. Rivest and C. Stein, Introduction To Algorithms, The MIT Press, Cambridge, 2009.   Google Scholar
[3]

C. A. Floudas and P. M. Pardalos, Encyclopedia of Optimization, Springer, New York, 2009. doi: 10.1016/j.tcs.2009.07.038.  Google Scholar

[4]

I. Frenkel and M. Libine, Quaternionic analysis, representation theory and physics, Advances in Mathematics, 218 (2008), 1806-1877.  doi: 10.1016/j.aim.2008.03.021.  Google Scholar

[5]

R. Hemmecke, M. Köppe, J. Lee and R. Weismantel, Nonlinear integer programming, in 50 Years of Integer Programming 1958–2008: The Early Years and State-of-the-Art Surveys (eds. M. Junger, T. Liebling, D. Naddef, W. Pulleyblank, W. Reinelt, G. Rinaldi, and L. Wolsey), Springer-Verlag, Berlin, (2010), 561–618. Google Scholar

[6]

G. James, Modern Engineering Mathematics, Trans-Atlantic Pubns Inc., 2015. Google Scholar

[7]

I. Kleiner, From numbers to rings: The early history of ring theory, Elem. Math., Birkhäuser, Basel, 53 (1998), 18–35. doi: 10.1007/s000170050029.  Google Scholar

[8]

E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons Inc., 2011.  Google Scholar

[9]

J. QianC. YangA. SchirotzekF. S. Maia and S. Marchesini, Efficient algorithms for ptychographic phase retrieval. Inverse problems and applications, Contemporary Mathematics, 615 (2014), 261-280.  doi: 10.1090/conm/615.  Google Scholar

[10]

V. Scheidemann, Introduction to Complex Analysis in Several Variables, Birkhäuser, 2005.  Google Scholar

[11]

W. T. Shaw, Complex Analysis with Mathematica, Cambridge, 2006. doi: 10.1017/CBO9781316036549.  Google Scholar

[12]

L. Sorber and M. Van Barel, Structured data fusion, IEEE Journal of Selected Topics in Signal Processing, 9 (2015), 586-600.   Google Scholar

[13]

L. SorberM. Van Barel and L. De. Lathauwer, Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank-(l${}_{r}$, l${}_{r}$, 1) terms, and a new generalization, SIAM Journal on Optimization, 23 (2013), 695-720.  doi: 10.1137/120868323.  Google Scholar

[14]

L. SorberM. Van Barel and L. De. Lathauwer, Unconstrained optimization of real functions in complex variables, SIAM Journal on Optimization, 22 (2012), 879-898.  doi: 10.1137/110832124.  Google Scholar

[15]

Y. S. XuQ. Ye and G. X. Meng, Hybrid phase retrieval algorithm based on modified very fast simulated annealing, International Journal of Microwave and Wireless Technologies, 10 (2018), 1072-1080.   Google Scholar

[1]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[2]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[3]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[4]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[5]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[6]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[7]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[8]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[9]

Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 733-763. doi: 10.3934/jimo.2019132

[10]

Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001

[11]

Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007

[12]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[13]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[14]

Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021016

[15]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[16]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[17]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021004

[18]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[19]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[20]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

 Impact Factor: 

Metrics

  • PDF downloads (176)
  • HTML views (408)
  • Cited by (0)

Other articles
by authors

[Back to Top]