Advanced Search
Article Contents
Article Contents

Complex and quaternionic optimization

Abstract Full Text(HTML) Related Papers Cited by
  • We introduce and suggest to research a special class of optimization problems, wherein an objective function is a real-valued complex variables function under constraints, comprising complex-valued complex variables functions: "Complex Optimization". We demonstrate multiple examples to show a rich variety of problems, describing Complex Optimization as an optimization subclass as well as a Mixed Integer-Real-Complex Optimization.

    Next, we introduce more general concept: "Quaternionic Optimization" for optimization over quaternion subsets.

    Mathematics Subject Classification: Primary: 90C48; Secondary: 30D30, 30A99.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] L. M. B. C. CamposComplex Analysis with Applications to Flows and Fields, CRC Press, 2011. 
    [2] T. CormenC. LeisersonR. Rivest and  C. SteinIntroduction To Algorithms, The MIT Press, Cambridge, 2009. 
    [3] C. A. Floudas and P. M. Pardalos, Encyclopedia of Optimization, Springer, New York, 2009. doi: 10.1016/j.tcs.2009.07.038.
    [4] I. Frenkel and M. Libine, Quaternionic analysis, representation theory and physics, Advances in Mathematics, 218 (2008), 1806-1877.  doi: 10.1016/j.aim.2008.03.021.
    [5] R. Hemmecke, M. Köppe, J. Lee and R. Weismantel, Nonlinear integer programming, in 50 Years of Integer Programming 1958–2008: The Early Years and State-of-the-Art Surveys (eds. M. Junger, T. Liebling, D. Naddef, W. Pulleyblank, W. Reinelt, G. Rinaldi, and L. Wolsey), Springer-Verlag, Berlin, (2010), 561–618.
    [6] G. James, Modern Engineering Mathematics, Trans-Atlantic Pubns Inc., 2015.
    [7] I. Kleiner, From numbers to rings: The early history of ring theory, Elem. Math., Birkhäuser, Basel, 53 (1998), 18–35. doi: 10.1007/s000170050029.
    [8] E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons Inc., 2011.
    [9] J. QianC. YangA. SchirotzekF. S. Maia and S. Marchesini, Efficient algorithms for ptychographic phase retrieval. Inverse problems and applications, Contemporary Mathematics, 615 (2014), 261-280.  doi: 10.1090/conm/615.
    [10] V. Scheidemann, Introduction to Complex Analysis in Several Variables, Birkhäuser, 2005.
    [11] W. T. Shaw, Complex Analysis with Mathematica, Cambridge, 2006. doi: 10.1017/CBO9781316036549.
    [12] L. Sorber and M. Van Barel, Structured data fusion, IEEE Journal of Selected Topics in Signal Processing, 9 (2015), 586-600. 
    [13] L. SorberM. Van Barel and L. De. Lathauwer, Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank-(l${}_{r}$, l${}_{r}$, 1) terms, and a new generalization, SIAM Journal on Optimization, 23 (2013), 695-720.  doi: 10.1137/120868323.
    [14] L. SorberM. Van Barel and L. De. Lathauwer, Unconstrained optimization of real functions in complex variables, SIAM Journal on Optimization, 22 (2012), 879-898.  doi: 10.1137/110832124.
    [15] Y. S. XuQ. Ye and G. X. Meng, Hybrid phase retrieval algorithm based on modified very fast simulated annealing, International Journal of Microwave and Wireless Technologies, 10 (2018), 1072-1080. 
  • 加载中

Article Metrics

HTML views(1320) PDF downloads(389) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint