September  2020, 10(3): 249-255. doi: 10.3934/naco.2019051

Complex and quaternionic optimization

507-111 Ridelle Avenue, Toronto, Ontario, M6B 1J7, Canada

Received  February 2019 Revised  October 2019 Published  February 2020

We introduce and suggest to research a special class of optimization problems, wherein an objective function is a real-valued complex variables function under constraints, comprising complex-valued complex variables functions: "Complex Optimization". We demonstrate multiple examples to show a rich variety of problems, describing Complex Optimization as an optimization subclass as well as a Mixed Integer-Real-Complex Optimization.

Next, we introduce more general concept: "Quaternionic Optimization" for optimization over quaternion subsets.

Citation: Yuly Shipilevsky. Complex and quaternionic optimization. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 249-255. doi: 10.3934/naco.2019051
References:
[1] L. M. B. C. Campos, Complex Analysis with Applications to Flows and Fields, CRC Press, 2011.   Google Scholar
[2] T. CormenC. LeisersonR. Rivest and C. Stein, Introduction To Algorithms, The MIT Press, Cambridge, 2009.   Google Scholar
[3]

C. A. Floudas and P. M. Pardalos, Encyclopedia of Optimization, Springer, New York, 2009. doi: 10.1016/j.tcs.2009.07.038.  Google Scholar

[4]

I. Frenkel and M. Libine, Quaternionic analysis, representation theory and physics, Advances in Mathematics, 218 (2008), 1806-1877.  doi: 10.1016/j.aim.2008.03.021.  Google Scholar

[5]

R. Hemmecke, M. Köppe, J. Lee and R. Weismantel, Nonlinear integer programming, in 50 Years of Integer Programming 1958–2008: The Early Years and State-of-the-Art Surveys (eds. M. Junger, T. Liebling, D. Naddef, W. Pulleyblank, W. Reinelt, G. Rinaldi, and L. Wolsey), Springer-Verlag, Berlin, (2010), 561–618. Google Scholar

[6]

G. James, Modern Engineering Mathematics, Trans-Atlantic Pubns Inc., 2015. Google Scholar

[7]

I. Kleiner, From numbers to rings: The early history of ring theory, Elem. Math., Birkhäuser, Basel, 53 (1998), 18–35. doi: 10.1007/s000170050029.  Google Scholar

[8]

E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons Inc., 2011.  Google Scholar

[9]

J. QianC. YangA. SchirotzekF. S. Maia and S. Marchesini, Efficient algorithms for ptychographic phase retrieval. Inverse problems and applications, Contemporary Mathematics, 615 (2014), 261-280.  doi: 10.1090/conm/615.  Google Scholar

[10]

V. Scheidemann, Introduction to Complex Analysis in Several Variables, Birkhäuser, 2005.  Google Scholar

[11]

W. T. Shaw, Complex Analysis with Mathematica, Cambridge, 2006. doi: 10.1017/CBO9781316036549.  Google Scholar

[12]

L. Sorber and M. Van Barel, Structured data fusion, IEEE Journal of Selected Topics in Signal Processing, 9 (2015), 586-600.   Google Scholar

[13]

L. SorberM. Van Barel and L. De. Lathauwer, Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank-(l${}_{r}$, l${}_{r}$, 1) terms, and a new generalization, SIAM Journal on Optimization, 23 (2013), 695-720.  doi: 10.1137/120868323.  Google Scholar

[14]

L. SorberM. Van Barel and L. De. Lathauwer, Unconstrained optimization of real functions in complex variables, SIAM Journal on Optimization, 22 (2012), 879-898.  doi: 10.1137/110832124.  Google Scholar

[15]

Y. S. XuQ. Ye and G. X. Meng, Hybrid phase retrieval algorithm based on modified very fast simulated annealing, International Journal of Microwave and Wireless Technologies, 10 (2018), 1072-1080.   Google Scholar

show all references

References:
[1] L. M. B. C. Campos, Complex Analysis with Applications to Flows and Fields, CRC Press, 2011.   Google Scholar
[2] T. CormenC. LeisersonR. Rivest and C. Stein, Introduction To Algorithms, The MIT Press, Cambridge, 2009.   Google Scholar
[3]

C. A. Floudas and P. M. Pardalos, Encyclopedia of Optimization, Springer, New York, 2009. doi: 10.1016/j.tcs.2009.07.038.  Google Scholar

[4]

I. Frenkel and M. Libine, Quaternionic analysis, representation theory and physics, Advances in Mathematics, 218 (2008), 1806-1877.  doi: 10.1016/j.aim.2008.03.021.  Google Scholar

[5]

R. Hemmecke, M. Köppe, J. Lee and R. Weismantel, Nonlinear integer programming, in 50 Years of Integer Programming 1958–2008: The Early Years and State-of-the-Art Surveys (eds. M. Junger, T. Liebling, D. Naddef, W. Pulleyblank, W. Reinelt, G. Rinaldi, and L. Wolsey), Springer-Verlag, Berlin, (2010), 561–618. Google Scholar

[6]

G. James, Modern Engineering Mathematics, Trans-Atlantic Pubns Inc., 2015. Google Scholar

[7]

I. Kleiner, From numbers to rings: The early history of ring theory, Elem. Math., Birkhäuser, Basel, 53 (1998), 18–35. doi: 10.1007/s000170050029.  Google Scholar

[8]

E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons Inc., 2011.  Google Scholar

[9]

J. QianC. YangA. SchirotzekF. S. Maia and S. Marchesini, Efficient algorithms for ptychographic phase retrieval. Inverse problems and applications, Contemporary Mathematics, 615 (2014), 261-280.  doi: 10.1090/conm/615.  Google Scholar

[10]

V. Scheidemann, Introduction to Complex Analysis in Several Variables, Birkhäuser, 2005.  Google Scholar

[11]

W. T. Shaw, Complex Analysis with Mathematica, Cambridge, 2006. doi: 10.1017/CBO9781316036549.  Google Scholar

[12]

L. Sorber and M. Van Barel, Structured data fusion, IEEE Journal of Selected Topics in Signal Processing, 9 (2015), 586-600.   Google Scholar

[13]

L. SorberM. Van Barel and L. De. Lathauwer, Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank-(l${}_{r}$, l${}_{r}$, 1) terms, and a new generalization, SIAM Journal on Optimization, 23 (2013), 695-720.  doi: 10.1137/120868323.  Google Scholar

[14]

L. SorberM. Van Barel and L. De. Lathauwer, Unconstrained optimization of real functions in complex variables, SIAM Journal on Optimization, 22 (2012), 879-898.  doi: 10.1137/110832124.  Google Scholar

[15]

Y. S. XuQ. Ye and G. X. Meng, Hybrid phase retrieval algorithm based on modified very fast simulated annealing, International Journal of Microwave and Wireless Technologies, 10 (2018), 1072-1080.   Google Scholar

[1]

Siqi Li, Weiyi Qian. Analysis of complexity of primal-dual interior-point algorithms based on a new kernel function for linear optimization. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 37-46. doi: 10.3934/naco.2015.5.37

[2]

Hongming Yang, C. Y. Chung, Xiaojiao Tong, Pingping Bing. Research on dynamic equilibrium of power market with complex network constraints based on nonlinear complementarity function. Journal of Industrial & Management Optimization, 2008, 4 (3) : 617-630. doi: 10.3934/jimo.2008.4.617

[3]

Guoqiang Wang, Zhongchen Wu, Zhongtuan Zheng, Xinzhong Cai. Complexity analysis of primal-dual interior-point methods for semidefinite optimization based on a parametric kernel function with a trigonometric barrier term. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 101-113. doi: 10.3934/naco.2015.5.101

[4]

Anurag Jayswala, Tadeusz Antczakb, Shalini Jha. Second order modified objective function method for twice differentiable vector optimization problems over cone constraints. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 133-145. doi: 10.3934/naco.2019010

[5]

Carlo Sinestrari. Semiconcavity of the value function for exit time problems with nonsmooth target. Communications on Pure & Applied Analysis, 2004, 3 (4) : 757-774. doi: 10.3934/cpaa.2004.3.757

[6]

Saeid Ansary Karbasy, Maziar Salahi. Quadratic optimization with two ball constraints. Numerical Algebra, Control & Optimization, 2020, 10 (2) : 165-175. doi: 10.3934/naco.2019046

[7]

K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026

[8]

Lianshuan Shi, Enmin Feng, Huanchun Sun, Zhaosheng Feng. A two-step algorithm for layout optimization of structures with discrete variables. Journal of Industrial & Management Optimization, 2007, 3 (3) : 543-552. doi: 10.3934/jimo.2007.3.543

[9]

Jianxin Zhou. Optimization with some uncontrollable variables: a min-equilibrium approach. Journal of Industrial & Management Optimization, 2007, 3 (1) : 129-138. doi: 10.3934/jimo.2007.3.129

[10]

Afaf Bouharguane, Pascal Azerad, Frédéric Bouchette, Fabien Marche, Bijan Mohammadi. Low complexity shape optimization & a posteriori high fidelity validation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 759-772. doi: 10.3934/dcdsb.2010.13.759

[11]

Zhuoqin Yang, Tingting Guan. Bifurcation analysis of complex bursting induced by two different time-scale slow variables. Conference Publications, 2011, 2011 (Special) : 1440-1447. doi: 10.3934/proc.2011.2011.1440

[12]

Rüdiger Schultz. Two-stage stochastic programs: Integer variables, dominance relations and PDE constraints. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 713-738. doi: 10.3934/naco.2012.2.713

[13]

Arezu Zare, Mohammad Keyanpour, Maziar Salahi. On fractional quadratic optimization problem with two quadratic constraints. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 301-315. doi: 10.3934/naco.2020003

[14]

Jianjun Liu, Min Zeng, Yifan Ge, Changzhi Wu, Xiangyu Wang. Improved Cuckoo Search algorithm for numerical function optimization. Journal of Industrial & Management Optimization, 2020, 16 (1) : 103-115. doi: 10.3934/jimo.2018142

[15]

Kanji Inui, Hikaru Okada, Hiroki Sumi. The Hausdorff dimension function of the family of conformal iterated function systems of generalized complex continued fractions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 753-766. doi: 10.3934/dcds.2020060

[16]

Li Gang. An optimization detection algorithm for complex intrusion interference signal in mobile wireless network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1371-1384. doi: 10.3934/dcdss.2019094

[17]

M. Delgado Pineda, E. A. Galperin, P. Jiménez Guerra. MAPLE code of the cubic algorithm for multiobjective optimization with box constraints. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 407-424. doi: 10.3934/naco.2013.3.407

[18]

X. X. Huang, Xiaoqi Yang, K. L. Teo. A smoothing scheme for optimization problems with Max-Min constraints. Journal of Industrial & Management Optimization, 2007, 3 (2) : 209-222. doi: 10.3934/jimo.2007.3.209

[19]

Chunyang Zhang, Shugong Zhang, Qinghuai Liu. Homotopy method for a class of multiobjective optimization problems with equilibrium constraints. Journal of Industrial & Management Optimization, 2017, 13 (1) : 81-92. doi: 10.3934/jimo.2016005

[20]

Chunlin Hao, Xinwei Liu. Global convergence of an SQP algorithm for nonlinear optimization with overdetermined constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 19-29. doi: 10.3934/naco.2012.2.19

 Impact Factor: 

Article outline

[Back to Top]