September  2020, 10(3): 275-300. doi: 10.3934/naco.2020002

Numerical solution of bilateral obstacle optimal control problem, where the controls and the obstacles coincide

Numerical Analysis, Optimization and Statistical Laboratory (LANOS), Badji-Mokhtar, Annaba University, P.O. Box 12, 23000, Annaba, Algeria

Received  December 2018 Revised  August 2019 Published  February 2020

Fund Project: The authors would like to thank the anonymous referee for careful reading and the suggestions of some improvements in presentation that have been implemented in the final version of the manuscript

This work is deals with the numerical solution of a bilateral obstacle optimal control problem which is similar to the one given in Bergounioux et al [9] with some modifications. It can be regarded as an extension of our previous work [18], where the main feature of the present work is that the controls and the two obstacles are the same. For the numerical resolution we follow the idea of our previous work [18]. We begin by discretizing the optimality system of the underlying problem by using finite differences schemes, then we propose an iterative algorithm. Finally, numerical examples are provides to show the efficiency of the proposed algorithm and the used scheme.

Citation: Radouen Ghanem, Billel Zireg. Numerical solution of bilateral obstacle optimal control problem, where the controls and the obstacles coincide. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 275-300. doi: 10.3934/naco.2020002
References:
[1]

Y. AchdouG. Indragoby and O. Pironneau, Volatility calibration with American options, Methods Appl. of Anal., 11 (2004), 533-556.   Google Scholar

[2] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Elsivier, Academic Press, Amsterdam, 2003.   Google Scholar
[3]

D. R. Adams and S. Lenhart, An obstacle control problem with a source term, Appl. Math. Optim., 47 (2002), 79-95.  doi: 10.1007/s00245-002-0739-1.  Google Scholar

[4]

G. M. Bahaa, Fractional optimal control problem for variational inequalities with control constraints, IMA J. Math. Control Inform., 35 (2016), 107-122.  doi: 10.1093/imamci/dnw040.  Google Scholar

[5]

V. Barbu, Optimal Control of Varitional Inequalities, Pitman, London, 1984.  Google Scholar

[6]

M. BergouniouxX. BonnefondT. Haberkorn and Y. Privat, An optimal control problem in photoacoustic tomography, Math. Models Methods Appl. Sci., 24 (2014), 2525-2548.  doi: 10.1142/S0218202514500286.  Google Scholar

[7]

M. Bergounioux and Y. Privat, Shape optimization with Stokes constraints over the set of axisymmetric domains, SIAM J. Control Optim., 51 (2013), 599-628.  doi: 10.1137/100818133.  Google Scholar

[8]

M. Bergounioux and S. Lenhart, Optimal control of the obstacle in semilinear variational inequalities, Positivity, 8 (2004), 229–242. doi: 10.1007/s11117-004-5009-9.  Google Scholar

[9]

M. Bergounioux and S. Lenhart, Optimal control of the bilateral obstacle problems, SIAM J. Control Optim., 43 (2004), 249-255.  doi: 10.1137/S0363012902416912.  Google Scholar

[10]

T. Betz, Optimal Control of Two Variational Inequalities Arising in Solid Mechanics, Ph.D Thesis, Universitätsbibliothek Dortmund, 2015. Google Scholar

[11]

BockIgor and Kečkemétyová, Mária, Regularized optimal control problem for a beam vibrating against an elastic foundation, Tatra Mt. Math. Publ., 63 (2015), 53-71.  doi: 10.1515/tmmp-2015-0020.  Google Scholar

[12]

H. Brzis and D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J., 23 (1974), 831-844.  doi: 10.1512/iumj.1974.23.23069.  Google Scholar

[13]

P. ColliG. GilardiE. Rocca and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth, Nonlinearity, 30 (2017), 2518-2546.  doi: 10.1088/1361-6544/aa6e5f.  Google Scholar

[14]

M. Chipot, Variational Inequalities and Flow in Porous Media, Springer-Verlag, New York, 52 (1984). doi: 10.1007/978-1-4612-1120-4.  Google Scholar

[15]

J. C. De Los Reyes, On the optimal control of some nonsmooth distributed parameter systems arising in mechanics, GAMM-Mitt., 40 (2018), 268-286.  doi: 10.1002/gamm.201740002.  Google Scholar

[16]

S. DesongZ. Zhongding and Y. Fuxin, A variational inequality principle in solid mechanics and application in physically non-linear problems, Communications in Applied Numerical Methods, 6 (1990), 35-45.  doi: 10.1002/cnm.1630060106.  Google Scholar

[17]

R. Ghanem, Optimal control of unilateral obstacle problem with a source term, Positivity, 13 (2009), 321-338.  doi: 10.1007/s11117-008-2241-8.  Google Scholar

[18]

R. Ghanem and B. Zireg, On the numerical study of an obstacle optimal control problem with source term, J. Appl. Math. Comput., 45 (2014), 375-409.  doi: 10.1007/s12190-013-0728-3.  Google Scholar

[19]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[20]

I. HlaváčekI. Bock and J. Lovíšek, Optimal control of a variational inequality with applications to structural analysis. I. Optimal design of a beam with unilateral supports, Appl. Math. Optim., 11 (1984), 111-143.  doi: 10.1007/BF01442173.  Google Scholar

[21]

C. U. HuyP. J. Mckenna and W. Walter, Finite difference approximations to the Dirichlet problem for elliptic systems, Numer. Math., 49 (1986), 227-237.  doi: 10.1007/BF01389626.  Google Scholar

[22]

K. Ito and K. Kunisch, Optimal control of elliptic variational inequalities, Appl. Math. Optim., 41 (2000), 343-364.  doi: 10.1007/s002459911017.  Google Scholar

[23]

K. Ito and K. Kunisch, Optimal control of obstacle problems by $H^{1}-$obstacles, Appl. Math. Optim., 56 (2007), 1-17.  doi: 10.1007/s00245-007-0877-6.  Google Scholar

[24]

K. Kunisch and D. Wachsmuth, Sufficient optimality conditions and semi-smooth Newton methods for optimal control of stationary variational inequalities, ESAIM Control Optim. Calc. Var., 18 (2012), 520-547.  doi: 10.1051/cocv/2011105.  Google Scholar

[25]

J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519.  doi: 10.1002/cpa.3160200302.  Google Scholar

[26]

J. L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, (French), Dunod, Paris, 1 (1968).  Google Scholar

[27]

F. Mignot and J. P. Puel, Optimal control in some variational inequalities, SIAM J. Control Optim., 22 (1984), 466-476.  doi: 10.1137/0322028.  Google Scholar

[28]

F. Mignot, Contrôle dans les inéquatons variationelles elliptiques, (French), J. Funct. Anal., 22 (1976), 466-476.  doi: 10.1016/0022-1236(76)90017-3.  Google Scholar

[29]

S. A. Morris, The Schauder-Tychonoff fixed point theorem and applications, Matematický Časopis, 25 (1975), 165–172. doi: 10.1155/2013/692879.  Google Scholar

[30]

Z. Peng and K. Kunisch, Optimal control of elliptic variational–hemivariational inequalities, J. Optim. Theory Appl., 178 (2018), 1-25.  doi: 10.1007/s10957-018-1303-8.  Google Scholar

[31]

J. F. Rodrigues, Obstacle Problems in Mathematical Physics, Elsevier, New york, 1987.  Google Scholar

[32]

V. Shcherbakov, Shape optimization of rigid inclusions for elastic plates with cracks, Z. Angew. Math. Phys., 67 (2016), 71-76.  doi: 10.1007/s00033-016-0666-7.  Google Scholar

[33]

M. SofoneaA. Benraouda and H. Hechaichi, Optimal control of a two-dimensional contact problem, Appl. Anal., 97 (2018), 1281-1298.  doi: 10.1080/00036811.2017.1337895.  Google Scholar

show all references

References:
[1]

Y. AchdouG. Indragoby and O. Pironneau, Volatility calibration with American options, Methods Appl. of Anal., 11 (2004), 533-556.   Google Scholar

[2] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Elsivier, Academic Press, Amsterdam, 2003.   Google Scholar
[3]

D. R. Adams and S. Lenhart, An obstacle control problem with a source term, Appl. Math. Optim., 47 (2002), 79-95.  doi: 10.1007/s00245-002-0739-1.  Google Scholar

[4]

G. M. Bahaa, Fractional optimal control problem for variational inequalities with control constraints, IMA J. Math. Control Inform., 35 (2016), 107-122.  doi: 10.1093/imamci/dnw040.  Google Scholar

[5]

V. Barbu, Optimal Control of Varitional Inequalities, Pitman, London, 1984.  Google Scholar

[6]

M. BergouniouxX. BonnefondT. Haberkorn and Y. Privat, An optimal control problem in photoacoustic tomography, Math. Models Methods Appl. Sci., 24 (2014), 2525-2548.  doi: 10.1142/S0218202514500286.  Google Scholar

[7]

M. Bergounioux and Y. Privat, Shape optimization with Stokes constraints over the set of axisymmetric domains, SIAM J. Control Optim., 51 (2013), 599-628.  doi: 10.1137/100818133.  Google Scholar

[8]

M. Bergounioux and S. Lenhart, Optimal control of the obstacle in semilinear variational inequalities, Positivity, 8 (2004), 229–242. doi: 10.1007/s11117-004-5009-9.  Google Scholar

[9]

M. Bergounioux and S. Lenhart, Optimal control of the bilateral obstacle problems, SIAM J. Control Optim., 43 (2004), 249-255.  doi: 10.1137/S0363012902416912.  Google Scholar

[10]

T. Betz, Optimal Control of Two Variational Inequalities Arising in Solid Mechanics, Ph.D Thesis, Universitätsbibliothek Dortmund, 2015. Google Scholar

[11]

BockIgor and Kečkemétyová, Mária, Regularized optimal control problem for a beam vibrating against an elastic foundation, Tatra Mt. Math. Publ., 63 (2015), 53-71.  doi: 10.1515/tmmp-2015-0020.  Google Scholar

[12]

H. Brzis and D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J., 23 (1974), 831-844.  doi: 10.1512/iumj.1974.23.23069.  Google Scholar

[13]

P. ColliG. GilardiE. Rocca and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth, Nonlinearity, 30 (2017), 2518-2546.  doi: 10.1088/1361-6544/aa6e5f.  Google Scholar

[14]

M. Chipot, Variational Inequalities and Flow in Porous Media, Springer-Verlag, New York, 52 (1984). doi: 10.1007/978-1-4612-1120-4.  Google Scholar

[15]

J. C. De Los Reyes, On the optimal control of some nonsmooth distributed parameter systems arising in mechanics, GAMM-Mitt., 40 (2018), 268-286.  doi: 10.1002/gamm.201740002.  Google Scholar

[16]

S. DesongZ. Zhongding and Y. Fuxin, A variational inequality principle in solid mechanics and application in physically non-linear problems, Communications in Applied Numerical Methods, 6 (1990), 35-45.  doi: 10.1002/cnm.1630060106.  Google Scholar

[17]

R. Ghanem, Optimal control of unilateral obstacle problem with a source term, Positivity, 13 (2009), 321-338.  doi: 10.1007/s11117-008-2241-8.  Google Scholar

[18]

R. Ghanem and B. Zireg, On the numerical study of an obstacle optimal control problem with source term, J. Appl. Math. Comput., 45 (2014), 375-409.  doi: 10.1007/s12190-013-0728-3.  Google Scholar

[19]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[20]

I. HlaváčekI. Bock and J. Lovíšek, Optimal control of a variational inequality with applications to structural analysis. I. Optimal design of a beam with unilateral supports, Appl. Math. Optim., 11 (1984), 111-143.  doi: 10.1007/BF01442173.  Google Scholar

[21]

C. U. HuyP. J. Mckenna and W. Walter, Finite difference approximations to the Dirichlet problem for elliptic systems, Numer. Math., 49 (1986), 227-237.  doi: 10.1007/BF01389626.  Google Scholar

[22]

K. Ito and K. Kunisch, Optimal control of elliptic variational inequalities, Appl. Math. Optim., 41 (2000), 343-364.  doi: 10.1007/s002459911017.  Google Scholar

[23]

K. Ito and K. Kunisch, Optimal control of obstacle problems by $H^{1}-$obstacles, Appl. Math. Optim., 56 (2007), 1-17.  doi: 10.1007/s00245-007-0877-6.  Google Scholar

[24]

K. Kunisch and D. Wachsmuth, Sufficient optimality conditions and semi-smooth Newton methods for optimal control of stationary variational inequalities, ESAIM Control Optim. Calc. Var., 18 (2012), 520-547.  doi: 10.1051/cocv/2011105.  Google Scholar

[25]

J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519.  doi: 10.1002/cpa.3160200302.  Google Scholar

[26]

J. L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, (French), Dunod, Paris, 1 (1968).  Google Scholar

[27]

F. Mignot and J. P. Puel, Optimal control in some variational inequalities, SIAM J. Control Optim., 22 (1984), 466-476.  doi: 10.1137/0322028.  Google Scholar

[28]

F. Mignot, Contrôle dans les inéquatons variationelles elliptiques, (French), J. Funct. Anal., 22 (1976), 466-476.  doi: 10.1016/0022-1236(76)90017-3.  Google Scholar

[29]

S. A. Morris, The Schauder-Tychonoff fixed point theorem and applications, Matematický Časopis, 25 (1975), 165–172. doi: 10.1155/2013/692879.  Google Scholar

[30]

Z. Peng and K. Kunisch, Optimal control of elliptic variational–hemivariational inequalities, J. Optim. Theory Appl., 178 (2018), 1-25.  doi: 10.1007/s10957-018-1303-8.  Google Scholar

[31]

J. F. Rodrigues, Obstacle Problems in Mathematical Physics, Elsevier, New york, 1987.  Google Scholar

[32]

V. Shcherbakov, Shape optimization of rigid inclusions for elastic plates with cracks, Z. Angew. Math. Phys., 67 (2016), 71-76.  doi: 10.1007/s00033-016-0666-7.  Google Scholar

[33]

M. SofoneaA. Benraouda and H. Hechaichi, Optimal control of a two-dimensional contact problem, Appl. Anal., 97 (2018), 1281-1298.  doi: 10.1080/00036811.2017.1337895.  Google Scholar

Figure 1.  Left (error $ \epsilon _{n} $, continuous line; $ \omega = 0.25 $, dash line; $ \omega = 0.5 $, dash-dot line; $ \omega = 0.75 $), right (state function $ y $)
Figure 2.  Left (obstacle function $ \psi $), right (obstacle function $ \varphi $)
Figure 3.  Left (error $ \epsilon _{n} $, continuous line; $ N = 30 $, dash line; $ N = 35 $, dash-dot line; $ N = 40 $), right (state function $ y $)
Figure 4.  Left (obstacle function $ \psi $), right (obstacle function $ \varphi $)
Figure 5.  Left(error $ \epsilon _{n} $, continuous line $ \nu = 0.1 $; dash line $ \nu = 0.5 $; dash-dot line $ \nu = 1 $), right (state function $ y $)
Figure 6.  Left(obstacle function $ \varphi $), right (obstacle function $ \psi $)
Figure 7.  Left(error $ \epsilon_{n} $, continuous line; $ \delta = h^{2} $, dash line; $ \delta = h^{3} $, dash-dot line; $ \delta = h^{4} $), right (state function $ y $)
Figure 8.  Left (obstacle function $ \psi $), right (right(obstacle function $ \varphi $))
Algorithm 2 Implemented continuous algorithm
1: Begin
2: Input :$ \left\{ y_{0}^{\delta }, p_{0}^{\delta }, \varphi _{0}^{\delta }, \lambda _{0}^{\delta },\psi _{0}^{\delta },\delta ,\nu ,\omega_{y},\omega_{\varphi},\omega_{\psi},\varepsilon\right\} $ choose $ \varphi _{0}^{\delta } $ and $ \psi _{0}^{\delta }\in \mathcal{W},\varepsilon $ and $ \delta $ in $ \mathbb{R}_{+}^{\ast }; $
3: Calculate $ J_{n-1} \leftarrow J_{n-1}\left(y^{\delta}_{n-1}, \varphi^{\delta}_{n-1}, \psi^{\delta}_{n-1}\right) $
4:   Solve $ \left( A+\beta _{\delta }^{\prime }\left( y_{n-1}^{\delta }-\varphi _{n-1}^{\delta }\right)+\beta _{\delta }^{\prime }\left(\psi _{n-1}^{\delta }- y_{n-1}^{\delta }\right) \right)r_{n}^{\delta }= $ $ -\omega_{y}\left( A y_{n-1}^{\delta }+\beta _{\delta }\left( y_{n-1}^{\delta }-\varphi _{n-1}^{\delta } \right)-\beta _{\delta }\left( \psi _{n-1}^{\delta } -y_{n-1}^{\delta }\right) -f \right) $ on $ r_{n}^{\delta } $.
5: Calculate $ y_{n}^{\delta }=y_{n-1}^{\delta }+ $ $ r_{n}^{\delta } $.
6: Solve $ \left( A +\beta _{\delta }^{\prime }\left( y_{n}^{\delta }-\varphi _{n-1}^{\delta }\right)+\beta _{\delta }^{\prime }\left( \psi _{n-1}^{\delta } -y_{n}^{\delta }\right) \right) p_{n}^{\delta }=y_{n}^{\delta }-z $ on $ p_{n}^{\delta } $.
7: Calculate $ \lambda_{n}^{\delta } = \nu \Delta \varphi _{n-1}^{\delta }+\beta _{\delta }^{\prime }\left( y_{n}^{\delta }-\varphi _{n-1}^{\delta }\right) p_{n}^{\delta } $.
8: Solve$ \left( \nu \Delta+\beta _{\delta }^{\prime \prime }\left(\psi _{n-1}^{\delta } -y_{n}^{\delta }\right) p_{n}^{\delta }\right)r_{n}^{\delta }=-\omega_{\psi}\left(\nu A_{h}^{d}\psi _{n-1}^{\delta }+\beta _{\delta }^{\prime }\left( \psi _{n-1}^{\delta }-y_{n}^{\delta }\right) p_{n}^{\delta }+\lambda_{n}^{\delta }\right) $ on $ r_{n}^{\delta } $.
9: Calculate $ \psi _{n}^{\delta }=\psi _{n-1}^{\delta }+ $ $ r_{n}^{\delta } $.
10: Solve$ \left( \nu \Delta-\beta _{\delta }^{\prime \prime }\left( y_{n}^{\delta }-\varphi _{n-1}^{\delta } \right) p_{n}^{\delta }\right) r_{n}^{\delta }=-\omega_{\varphi}\left(\nu A_{h}^{d}\varphi _{n-1}^{\delta }+\beta _{\delta }^{\prime }\left( y_{n}^{\delta }-\varphi _{n-1}^{\delta }\right) p_{n}^{\delta }-\lambda_{n}^{\delta }\right) $ on $ r_{n}^{\delta } $.
11: Calculate $ \varphi _{n}^{\delta }=\varphi _{n-1}^{\delta }+ $ $ r_{n}^{\delta } $.
12: Calculate $ J_{n} \leftarrow J_{n-1}\left(y^{\delta}_{n}, \varphi^{\delta}_{n},\psi^{\delta}_{n}\right) $.
13: If $ |J_{n}-J_{n-1}| \leq \varepsilon $ Stop.
14: Ensure : $ s_{n}^{\delta }=\left( y_{n}^{\delta },\varphi_{n}^{\delta },\psi_{n}^{\delta },p_{n}^{\delta }\right) $ is a solution.
15:      Else; $ n\leftarrow n+1 $, go to Begin.
16: End if
17: End
Algorithm 2 Implemented continuous algorithm
1: Begin
2: Input :$ \left\{ y_{0}^{\delta }, p_{0}^{\delta }, \varphi _{0}^{\delta }, \lambda _{0}^{\delta },\psi _{0}^{\delta },\delta ,\nu ,\omega_{y},\omega_{\varphi},\omega_{\psi},\varepsilon\right\} $ choose $ \varphi _{0}^{\delta } $ and $ \psi _{0}^{\delta }\in \mathcal{W},\varepsilon $ and $ \delta $ in $ \mathbb{R}_{+}^{\ast }; $
3: Calculate $ J_{n-1} \leftarrow J_{n-1}\left(y^{\delta}_{n-1}, \varphi^{\delta}_{n-1}, \psi^{\delta}_{n-1}\right) $
4:   Solve $ \left( A+\beta _{\delta }^{\prime }\left( y_{n-1}^{\delta }-\varphi _{n-1}^{\delta }\right)+\beta _{\delta }^{\prime }\left(\psi _{n-1}^{\delta }- y_{n-1}^{\delta }\right) \right)r_{n}^{\delta }= $ $ -\omega_{y}\left( A y_{n-1}^{\delta }+\beta _{\delta }\left( y_{n-1}^{\delta }-\varphi _{n-1}^{\delta } \right)-\beta _{\delta }\left( \psi _{n-1}^{\delta } -y_{n-1}^{\delta }\right) -f \right) $ on $ r_{n}^{\delta } $.
5: Calculate $ y_{n}^{\delta }=y_{n-1}^{\delta }+ $ $ r_{n}^{\delta } $.
6: Solve $ \left( A +\beta _{\delta }^{\prime }\left( y_{n}^{\delta }-\varphi _{n-1}^{\delta }\right)+\beta _{\delta }^{\prime }\left( \psi _{n-1}^{\delta } -y_{n}^{\delta }\right) \right) p_{n}^{\delta }=y_{n}^{\delta }-z $ on $ p_{n}^{\delta } $.
7: Calculate $ \lambda_{n}^{\delta } = \nu \Delta \varphi _{n-1}^{\delta }+\beta _{\delta }^{\prime }\left( y_{n}^{\delta }-\varphi _{n-1}^{\delta }\right) p_{n}^{\delta } $.
8: Solve$ \left( \nu \Delta+\beta _{\delta }^{\prime \prime }\left(\psi _{n-1}^{\delta } -y_{n}^{\delta }\right) p_{n}^{\delta }\right)r_{n}^{\delta }=-\omega_{\psi}\left(\nu A_{h}^{d}\psi _{n-1}^{\delta }+\beta _{\delta }^{\prime }\left( \psi _{n-1}^{\delta }-y_{n}^{\delta }\right) p_{n}^{\delta }+\lambda_{n}^{\delta }\right) $ on $ r_{n}^{\delta } $.
9: Calculate $ \psi _{n}^{\delta }=\psi _{n-1}^{\delta }+ $ $ r_{n}^{\delta } $.
10: Solve$ \left( \nu \Delta-\beta _{\delta }^{\prime \prime }\left( y_{n}^{\delta }-\varphi _{n-1}^{\delta } \right) p_{n}^{\delta }\right) r_{n}^{\delta }=-\omega_{\varphi}\left(\nu A_{h}^{d}\varphi _{n-1}^{\delta }+\beta _{\delta }^{\prime }\left( y_{n}^{\delta }-\varphi _{n-1}^{\delta }\right) p_{n}^{\delta }-\lambda_{n}^{\delta }\right) $ on $ r_{n}^{\delta } $.
11: Calculate $ \varphi _{n}^{\delta }=\varphi _{n-1}^{\delta }+ $ $ r_{n}^{\delta } $.
12: Calculate $ J_{n} \leftarrow J_{n-1}\left(y^{\delta}_{n}, \varphi^{\delta}_{n},\psi^{\delta}_{n}\right) $.
13: If $ |J_{n}-J_{n-1}| \leq \varepsilon $ Stop.
14: Ensure : $ s_{n}^{\delta }=\left( y_{n}^{\delta },\varphi_{n}^{\delta },\psi_{n}^{\delta },p_{n}^{\delta }\right) $ is a solution.
15:      Else; $ n\leftarrow n+1 $, go to Begin.
16: End if
17: End
Table 1.  Numerical results for two dimensional space while varying $ \omega $
$ \omega $ $ \sharp $ Iteration $ {J} $ $ \mid J_{n}-J_{n-1}\mid $ $ {\epsilon}_{n} $
0.25 62 29.460551e-4 9.601694e-16 3.982865e-11
0.5 28 29.460551e-4 6.392456e-16 1.180507e-11
0.75 15 29.460551e-4 5.212844e-16 5.253112e-12
1 5 29.460551e-4 6.878178e-16 9.642406e-10
$ \omega $ $ \sharp $ Iteration $ {J} $ $ \mid J_{n}-J_{n-1}\mid $ $ {\epsilon}_{n} $
0.25 62 29.460551e-4 9.601694e-16 3.982865e-11
0.5 28 29.460551e-4 6.392456e-16 1.180507e-11
0.75 15 29.460551e-4 5.212844e-16 5.253112e-12
1 5 29.460551e-4 6.878178e-16 9.642406e-10
Table 2.  Numerical results for two dimensional space while varying $ N $
$ N $ $ \sharp $ Iteration $ {J} $ $ \mid J_{n}-J_{n-1}\mid $ $ {\epsilon}_{n} $
30 26 1.632e-3 5.193328e-16 7.355250e-12
35 27 2.241e-3 5.165139e-16 6.513361e-12
40 28 2.946e-3 6.392456e-16 1.180507e-11
45 30 3.746e-3 7.350890e-16 2.389886e-11
$ N $ $ \sharp $ Iteration $ {J} $ $ \mid J_{n}-J_{n-1}\mid $ $ {\epsilon}_{n} $
30 26 1.632e-3 5.193328e-16 7.355250e-12
35 27 2.241e-3 5.165139e-16 6.513361e-12
40 28 2.946e-3 6.392456e-16 1.180507e-11
45 30 3.746e-3 7.350890e-16 2.389886e-11
Table 3.  Numerical results for two dimensional space while varying $ \nu $
$ \nu $ $ \sharp $ Iteration $ {J} $ $ \mid J_{n}-J_{n-1}\mid $ $ {\epsilon}_{n} $
0.001 300 29.460541e-4 1.227802e-13 3.695397e-05
0.01 29 29.460541e-4 5.676882e-16 5.966039e-11
0.1 29 29.460544e-4 5.676882e-16 5.966039e-11
0.5 28 29.460549e-4 7.650130e-16 2.529592e-11
1 28 29.460551e-4 6.392456e-16 1.180507e-11
$ \nu $ $ \sharp $ Iteration $ {J} $ $ \mid J_{n}-J_{n-1}\mid $ $ {\epsilon}_{n} $
0.001 300 29.460541e-4 1.227802e-13 3.695397e-05
0.01 29 29.460541e-4 5.676882e-16 5.966039e-11
0.1 29 29.460544e-4 5.676882e-16 5.966039e-11
0.5 28 29.460549e-4 7.650130e-16 2.529592e-11
1 28 29.460551e-4 6.392456e-16 1.180507e-11
Table 4.  Numerical results for two dimensional space while varying $ \delta $
$ \delta $ $ \sharp $ Iteration $ {J} $ $ \mid J_{n}-J_{n-1}\mid $ $ {\epsilon}_{n} $
$ h^{3} $ 27 29.460541e-4 8.135853e-16 8.627484e-12
$ h^{3.5} $ 27 29.460543e-4 8.270294e-16 8.809409e-12
$ h^{4} $ 28 29.460551e-4 6.392456e-16 1.180507e-11
$ h^{4.5} $ 33 29.460566e-4 9.358833e-16 1.016003e-10
$ \delta $ $ \sharp $ Iteration $ {J} $ $ \mid J_{n}-J_{n-1}\mid $ $ {\epsilon}_{n} $
$ h^{3} $ 27 29.460541e-4 8.135853e-16 8.627484e-12
$ h^{3.5} $ 27 29.460543e-4 8.270294e-16 8.809409e-12
$ h^{4} $ 28 29.460551e-4 6.392456e-16 1.180507e-11
$ h^{4.5} $ 33 29.460566e-4 9.358833e-16 1.016003e-10
[1]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[4]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[5]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[8]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[9]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[10]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[11]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[12]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[13]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[14]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[15]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[16]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[17]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[18]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[19]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[20]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

 Impact Factor: 

Metrics

  • PDF downloads (100)
  • HTML views (443)
  • Cited by (0)

Other articles
by authors

[Back to Top]