
-
Previous Article
On a new smoothing technique for non-smooth, non-convex optimization
- NACO Home
- This Issue
-
Next Article
Numerical solution of bilateral obstacle optimal control problem, where the controls and the obstacles coincide
On fractional quadratic optimization problem with two quadratic constraints
1. | Faculty of Mathematics Statistics and Computer Science, Semnan University, Semnan, Iran |
2. | Faculty of Mathematical Sciences and, Center of Excellence for Mathematical Modeling, Optimization and Combinatorial Computing (MMOCC), University of Guilan, Rasht, Iran |
In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to two quadratic constraints in the complex space. Using the classical Dinkelbach method, we transform the problem into a parametric nonlinear equation. We show that an optimal parameter can be found by employing the S-procedure and semidefinite relaxation technique. A key element to solve the original problem is to use the rank-one decomposition procedure. Finally, within the new algorithm, semidefinite relaxation is compared with the bisection method for finding the root on several examples. For further comparison, the solution of fmincon command of MATLAB also is reported.
References:
[1] |
R. A. Abrams,
Nonlinear programming in complex space: sufficient conditions and duality, Journal of Mathematical Analysis and Applications, 38 (1972), 619-632.
doi: 10.1016/0022-247X(72)90073-X. |
[2] |
R. A. Abrams and A. Ben-Israel,
Nonlinear programming in complex space: necessary conditions, SIAM Journal on Control, 9 (1971), 606-620.
|
[3] |
A. Aubry, V. Carotenuto and A. De Maio, New results on generalized fractional programming problems with toeplitz quadratics, IEEE Signal Processing Letters, 23 (2016), 848-852. Google Scholar |
[4] |
A. Aubry, A. De Maio, Y. Huang and M. Piezzo,
Robust design of radar doppler filters, IEEE Transactions on Signal Processing, 64 (2016), 5848-5860.
doi: 10.1109/TSP.2016.2576423. |
[5] |
T. Baleshan, A. Jayalath and J. Coetzee, On power minimisation and snr maximisation of distributed beamforming in cooperative communication systems, Electronics Letters, 50 (2014), 712-713. Google Scholar |
[6] |
O. Besson,
Adaptive detection with bounded steering vectors mismatch angle, IEEE Transactions on Signal Processing, 55 (2007), 1560-1564.
doi: 10.1109/TSP.2006.890820. |
[7] |
H. Cai, Y. Wang and T. Yi, An approach for minimizing a quadratically constrained fractional quadratic problem with application to the communications over wireless channels, Optimization Methods and Software, 29 (2014), 310-320. Google Scholar |
[8] |
H. Chen, S. Shahbazpanahi and A. B. Gershman,
Filter-and-forward distributed beamforming for two-way relay networks with frequency selective channels, IEEE Transactions on Signal Processing, 60 (2011), 1927-1941.
doi: 10.1109/TSP.2011.2178842. |
[9] |
J. Chen, H. Lai and S. Schaible,
Complex fractional programming and the charnes-cooper transformation, Journal of Optimization Theory and Applications, 126 (2005), 203-213.
doi: 10.1007/s10957-005-2669-y. |
[10] |
A. De Maio, Y. Huang, D. P. Palomar, S. Zhang and A. Farina,
Fractional qcqp with applications in ml steering direction estimation for radar detection, IEEE Transactions on Signal Processing, 59 (2010), 172-185.
doi: 10.1109/TSP.2010.2087327. |
[11] |
W. Dinkelbach,
On nonlinear fractional programming, Management Science, 13 (1967), 492-498.
doi: 10.1287/mnsc.13.7.492. |
[12] |
S. Fallahi and M. Salahi,
On the complex fractional quadratic optimization with a quadratic constraint, Opsearch, 54 (2017), 94-106.
doi: 10.1007/s12597-016-0263-8. |
[13] |
M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, Version 2.1, 2014.
doi: 10.1145/2700586. |
[14] |
J. Hsiao, On the optimization of mti clutter rejection, IEEE Transactions on Aerospace and Electronic Systems, AES-10 (1974), 622-629. Google Scholar |
[15] |
Y. Huang and S. Zhang,
Complex matrix decomposition and quadratic programming, Mathematics of Operations Research, 32 (2007), 758-768.
doi: 10.1287/moor.1070.0268. |
[16] |
R. Jagannathan,
On some properties of programming problems in parametric form pertaining to fractional programming, Management Science, 12 (1966), 609-615.
doi: 10.1287/mnsc.12.7.609. |
[17] |
V. Jeyakumar, N. Q. Huy and G. Li, Necessary and sufficient conditions for s-lemma and nonconvex quadratic optimization, Optimization and Engineering, 10 (2009), 491.
doi: 10.1007/s11081-008-9076-9. |
[18] |
U. T. Jönsson, A lecture on the s-procedure, Lecture Note at the Royal Institute of Technology, Sweden, 23 (2001), 34-36. Google Scholar |
[19] |
N. Levinson,
Linear programming in complex space, Journal of Mathematical Analysis and Applications, 14 (1966), 44-62.
doi: 10.1016/0022-247X(66)90061-8. |
[20] |
V.-B. Nguyen, R.-L. Sheu and Y. Xia,
An SDP approach for quadratic fractional problems with a two-sided quadratic constraint, Optimization Methods and Software, 31 (2016), 701-719.
doi: 10.1080/10556788.2015.1029575. |
[21] |
I. Pólik and T. Terlaky,
A survey of the s-lemma, SIAM Review, 49 (2007), 371-418.
doi: 10.1137/S003614450444614X. |
[22] |
M. Salahi and A. Zare,
SDO relaxation approach to fractional quadratic minimization with one quadratic constraint, Journal of Mathematical Modeling, 3 (2015), 1-13.
|
[23] |
R. L. Sheu, An SDP approach for some quadratic fractional problems (nonlinear analysis and convex analysis). Google Scholar |
[24] |
J. F. Sturm and S. Zhang,
On cones of nonnegative quadratic functions, Mathematics of Operations Research, 28 (2003), 246-267.
doi: 10.1287/moor.28.2.246.14485. |
[25] |
K. Swarup and J. Sharma, Programming with linear fractional functionals in complex spaces, Cahiers du centre Études et de Recherche Opérationelle, 12 (1970), 103–109. |
[26] |
T. Yi, L. Guo, K. Niu, H. Cai, J. Lin and W. Ai, Cooperative beamforming in cognitive radio network with hybrid relay, in 2012 19th International Conference on Telecommunications (ICT), IEEE, (2012), 1–5. Google Scholar |
[27] |
A. Zhang and S. Hayashi,
Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints, Numer. Algebra, Control and Optim., 1 (2011), 83-98.
doi: 10.3934/naco.2011.1.83. |
[28] |
X. Zhang, Z. He, X. Zhang and W. Peng, High-performance beampattern synthesis via linear fractional semidefinite relaxation and quasi-convex optimization, IEEE Transactions on Antennas and Propagation, 66 (2018), 3421-3431. Google Scholar |
show all references
References:
[1] |
R. A. Abrams,
Nonlinear programming in complex space: sufficient conditions and duality, Journal of Mathematical Analysis and Applications, 38 (1972), 619-632.
doi: 10.1016/0022-247X(72)90073-X. |
[2] |
R. A. Abrams and A. Ben-Israel,
Nonlinear programming in complex space: necessary conditions, SIAM Journal on Control, 9 (1971), 606-620.
|
[3] |
A. Aubry, V. Carotenuto and A. De Maio, New results on generalized fractional programming problems with toeplitz quadratics, IEEE Signal Processing Letters, 23 (2016), 848-852. Google Scholar |
[4] |
A. Aubry, A. De Maio, Y. Huang and M. Piezzo,
Robust design of radar doppler filters, IEEE Transactions on Signal Processing, 64 (2016), 5848-5860.
doi: 10.1109/TSP.2016.2576423. |
[5] |
T. Baleshan, A. Jayalath and J. Coetzee, On power minimisation and snr maximisation of distributed beamforming in cooperative communication systems, Electronics Letters, 50 (2014), 712-713. Google Scholar |
[6] |
O. Besson,
Adaptive detection with bounded steering vectors mismatch angle, IEEE Transactions on Signal Processing, 55 (2007), 1560-1564.
doi: 10.1109/TSP.2006.890820. |
[7] |
H. Cai, Y. Wang and T. Yi, An approach for minimizing a quadratically constrained fractional quadratic problem with application to the communications over wireless channels, Optimization Methods and Software, 29 (2014), 310-320. Google Scholar |
[8] |
H. Chen, S. Shahbazpanahi and A. B. Gershman,
Filter-and-forward distributed beamforming for two-way relay networks with frequency selective channels, IEEE Transactions on Signal Processing, 60 (2011), 1927-1941.
doi: 10.1109/TSP.2011.2178842. |
[9] |
J. Chen, H. Lai and S. Schaible,
Complex fractional programming and the charnes-cooper transformation, Journal of Optimization Theory and Applications, 126 (2005), 203-213.
doi: 10.1007/s10957-005-2669-y. |
[10] |
A. De Maio, Y. Huang, D. P. Palomar, S. Zhang and A. Farina,
Fractional qcqp with applications in ml steering direction estimation for radar detection, IEEE Transactions on Signal Processing, 59 (2010), 172-185.
doi: 10.1109/TSP.2010.2087327. |
[11] |
W. Dinkelbach,
On nonlinear fractional programming, Management Science, 13 (1967), 492-498.
doi: 10.1287/mnsc.13.7.492. |
[12] |
S. Fallahi and M. Salahi,
On the complex fractional quadratic optimization with a quadratic constraint, Opsearch, 54 (2017), 94-106.
doi: 10.1007/s12597-016-0263-8. |
[13] |
M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, Version 2.1, 2014.
doi: 10.1145/2700586. |
[14] |
J. Hsiao, On the optimization of mti clutter rejection, IEEE Transactions on Aerospace and Electronic Systems, AES-10 (1974), 622-629. Google Scholar |
[15] |
Y. Huang and S. Zhang,
Complex matrix decomposition and quadratic programming, Mathematics of Operations Research, 32 (2007), 758-768.
doi: 10.1287/moor.1070.0268. |
[16] |
R. Jagannathan,
On some properties of programming problems in parametric form pertaining to fractional programming, Management Science, 12 (1966), 609-615.
doi: 10.1287/mnsc.12.7.609. |
[17] |
V. Jeyakumar, N. Q. Huy and G. Li, Necessary and sufficient conditions for s-lemma and nonconvex quadratic optimization, Optimization and Engineering, 10 (2009), 491.
doi: 10.1007/s11081-008-9076-9. |
[18] |
U. T. Jönsson, A lecture on the s-procedure, Lecture Note at the Royal Institute of Technology, Sweden, 23 (2001), 34-36. Google Scholar |
[19] |
N. Levinson,
Linear programming in complex space, Journal of Mathematical Analysis and Applications, 14 (1966), 44-62.
doi: 10.1016/0022-247X(66)90061-8. |
[20] |
V.-B. Nguyen, R.-L. Sheu and Y. Xia,
An SDP approach for quadratic fractional problems with a two-sided quadratic constraint, Optimization Methods and Software, 31 (2016), 701-719.
doi: 10.1080/10556788.2015.1029575. |
[21] |
I. Pólik and T. Terlaky,
A survey of the s-lemma, SIAM Review, 49 (2007), 371-418.
doi: 10.1137/S003614450444614X. |
[22] |
M. Salahi and A. Zare,
SDO relaxation approach to fractional quadratic minimization with one quadratic constraint, Journal of Mathematical Modeling, 3 (2015), 1-13.
|
[23] |
R. L. Sheu, An SDP approach for some quadratic fractional problems (nonlinear analysis and convex analysis). Google Scholar |
[24] |
J. F. Sturm and S. Zhang,
On cones of nonnegative quadratic functions, Mathematics of Operations Research, 28 (2003), 246-267.
doi: 10.1287/moor.28.2.246.14485. |
[25] |
K. Swarup and J. Sharma, Programming with linear fractional functionals in complex spaces, Cahiers du centre Études et de Recherche Opérationelle, 12 (1970), 103–109. |
[26] |
T. Yi, L. Guo, K. Niu, H. Cai, J. Lin and W. Ai, Cooperative beamforming in cognitive radio network with hybrid relay, in 2012 19th International Conference on Telecommunications (ICT), IEEE, (2012), 1–5. Google Scholar |
[27] |
A. Zhang and S. Hayashi,
Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints, Numer. Algebra, Control and Optim., 1 (2011), 83-98.
doi: 10.3934/naco.2011.1.83. |
[28] |
X. Zhang, Z. He, X. Zhang and W. Peng, High-performance beampattern synthesis via linear fractional semidefinite relaxation and quasi-convex optimization, IEEE Transactions on Antennas and Propagation, 66 (2018), 3421-3431. Google Scholar |
SDO Method | Bisection Method | fmincon | |||||||
n | density | λ* | fvalue | time(s) | λ* | fvalue | time(s) | fvalue | time(s) |
50 | 1 | 1.201032e-01 | 1.201036e-01 | 0.2703 | 1.201032e-01 | 1.201036e-01 | 5.0101 | 1.397555e-01 | 0.0117 |
100 | 1 | 1.881241e-01 | 1.881249e-01 | 1.086:3 | 1.881241e-01 | 1.881249e-01 | 20.5448 | 1.987974e-01 | 0.0139 |
150 | 1 | 1.643814e-01 | 1.643875e-01 | 2.5524 | 1.643814e-01 | 1.643875e-01 | 50.1663 | 1.698622e-01 | 0.0174 |
200 | 1 | 1.558427e-01 | 1.558441e-01 | 5.9194 | 1.558427e-01 | 1.558441e-01 | 153.8498 | 1.755857e-01 | 0.0194 |
250 | 1 | 2.366953e-01 | 2.366986e-01 | 8.1471 | 2.366953e-01 | 2.366986e-01 | 226.1209 | 2.841313e-01 | 0.0269 |
50 | 0.5 | 1.193231e-02 | 1.193236e-02 | 0.2473 | 1.193231e-02 | 1.193236e-02 | 4.7561 | 1.958082e-02 | 0.0109 |
100 | 0.5 | 1.446475e-01 | 1.446483e-01 | 0.9903 | 1.446475e-01 | 1.446483e-01 | 18.3720 | 1.596917e-01 | 0.0128 |
150 | 0.5 | 1.024333e-01 | 1.024354e-01 | 2.4031 | 1.024333e-01 | 1.024354e-01 | 43.7765 | 1.129475e-01 | 0.0167 |
200 | 0.5 | 2.134589e-01 | 2.134593e-01 | 5.3849 | 2.371164e-01 | 0.0173 | |||
250 | 0.5 | 2.103671e-01 | 2.103684e-01 | 7.9862 | 2.278996e-01 | 0.0238 | |||
300 | 0.5 | 1.507763e-01 | 1.507789e-01 | 14.7993 | 1.631893e-01 | 0.0237 | |||
50 | 0.25 | 1.097243e-01 | 1.097248e-01 | 0.2444 | 1.097243e-01 | 1.097248e-01 | 4.4489 | 2.862603e-01 | 0.0098 |
100 | 0.25 | 3.690304e-01 | 3.690309e-01 | 0.9323 | 3.690304e-01 | 3.690309e-01 | 12.7842 | 3.791923e-01 | 0.0121 |
150 | 0.25 | 1.816562e-01 | 1.816565e-01 | 2.7160 | 1.816562^01 | 1.816565e-01 | 64.4395 | 1.944783e-01 | 0.0161 |
200 | 0.25 | 2.123675e-01 | 2.123678e-01 | 5.0127 | 2.897431e-01 | 0.0159 | |||
250 | 0.25 | 2.325119e-01 | 2.325124e-01 | 7.5622 | 2.666913e-01 | 0.0198 | |||
300 | 0.25 | 1.394089e-01 | 1.394093e-01 | 14.3163 | 1.534687e-01 | 0.0219 | |||
50 | 0.1 | 2.029650e-01 | 2.029654e-01 | 0.2021 | 2.029650e-01 | 2.029654e-01 | 3.8651 | 2.273829e-01 | 0.0086 |
100 | 0.1 | 4.695384e-01 | 4.695387e-01 | 0.8796 | 4.695384e-01 | 4.695387e-01 | 12.1470 | 4.812845e-01 | 0.0117 |
150 | 0.1 | 1.325870e-01 | 1.325874e-01 | 2.5595 | 1.325870e-01 | 1.325874e-01 | 49.9254 | 1.470531e-01 | 0.0144 |
200 | 0.1 | 1.442915e-01 | 1.442918e-01 | 4.8677 | 1.700139e-01 | 0.0151 | |||
250 | 0.1 | 4.210943e-01 | 4.210946e-01 | 7.1247 | 4.512736e-01 | 0.0179 | |||
300 | 0.1 | 1.547663e-01 | 1.547C71e-01 | 13.9812 | 1.673333e-01 | 0.0204 | |||
350 | 0.1 | 3.037856e-01 | 3.037861e-01 | 19.2776 | 3.293677e-01 | 0.0245 | |||
100 | 0.01 | 3.132863e-02 | 3.132868e-02 | 0.6293 | 3.132863e-02 | 3.132868e-02 | 11.4868 | 3.693282e-02 | 0.0117 |
150 | 0.01 | 1.423572e-02 | 1.423577e-02 | 1.5306 | 1.423572e-02 | 1.423577e-02 | 37.9483 | 3.092266e-02 | 0.0128 |
200 | 0.01 | 3.145664e-01 | 3.145669e-01 | 4.2319 | 3.364780e-01 | 0.0139 | |||
250 | 0.01 | 2.597103e-02 | 2.597105e-02 | 6.8963 | 2.777693e-02 | 0.0167 | |||
300 | 0.01 | 1.201043e-01 | 1.201049e-01 | 13.4639 | 1.537038e-01 | 0.0192 | |||
350 | 0.01 | 2.167836e-02 | 2.167842e-02 | 18.6749 | 2.478134e-02 | 0.0235 | |||
400 | 0.01 | 4.531146^01 | 4.531156e-01 | 24.1313 | 4.972134e-01 | 0.0263 |
SDO Method | Bisection Method | fmincon | |||||||
n | density | λ* | fvalue | time(s) | λ* | fvalue | time(s) | fvalue | time(s) |
50 | 1 | 1.201032e-01 | 1.201036e-01 | 0.2703 | 1.201032e-01 | 1.201036e-01 | 5.0101 | 1.397555e-01 | 0.0117 |
100 | 1 | 1.881241e-01 | 1.881249e-01 | 1.086:3 | 1.881241e-01 | 1.881249e-01 | 20.5448 | 1.987974e-01 | 0.0139 |
150 | 1 | 1.643814e-01 | 1.643875e-01 | 2.5524 | 1.643814e-01 | 1.643875e-01 | 50.1663 | 1.698622e-01 | 0.0174 |
200 | 1 | 1.558427e-01 | 1.558441e-01 | 5.9194 | 1.558427e-01 | 1.558441e-01 | 153.8498 | 1.755857e-01 | 0.0194 |
250 | 1 | 2.366953e-01 | 2.366986e-01 | 8.1471 | 2.366953e-01 | 2.366986e-01 | 226.1209 | 2.841313e-01 | 0.0269 |
50 | 0.5 | 1.193231e-02 | 1.193236e-02 | 0.2473 | 1.193231e-02 | 1.193236e-02 | 4.7561 | 1.958082e-02 | 0.0109 |
100 | 0.5 | 1.446475e-01 | 1.446483e-01 | 0.9903 | 1.446475e-01 | 1.446483e-01 | 18.3720 | 1.596917e-01 | 0.0128 |
150 | 0.5 | 1.024333e-01 | 1.024354e-01 | 2.4031 | 1.024333e-01 | 1.024354e-01 | 43.7765 | 1.129475e-01 | 0.0167 |
200 | 0.5 | 2.134589e-01 | 2.134593e-01 | 5.3849 | 2.371164e-01 | 0.0173 | |||
250 | 0.5 | 2.103671e-01 | 2.103684e-01 | 7.9862 | 2.278996e-01 | 0.0238 | |||
300 | 0.5 | 1.507763e-01 | 1.507789e-01 | 14.7993 | 1.631893e-01 | 0.0237 | |||
50 | 0.25 | 1.097243e-01 | 1.097248e-01 | 0.2444 | 1.097243e-01 | 1.097248e-01 | 4.4489 | 2.862603e-01 | 0.0098 |
100 | 0.25 | 3.690304e-01 | 3.690309e-01 | 0.9323 | 3.690304e-01 | 3.690309e-01 | 12.7842 | 3.791923e-01 | 0.0121 |
150 | 0.25 | 1.816562e-01 | 1.816565e-01 | 2.7160 | 1.816562^01 | 1.816565e-01 | 64.4395 | 1.944783e-01 | 0.0161 |
200 | 0.25 | 2.123675e-01 | 2.123678e-01 | 5.0127 | 2.897431e-01 | 0.0159 | |||
250 | 0.25 | 2.325119e-01 | 2.325124e-01 | 7.5622 | 2.666913e-01 | 0.0198 | |||
300 | 0.25 | 1.394089e-01 | 1.394093e-01 | 14.3163 | 1.534687e-01 | 0.0219 | |||
50 | 0.1 | 2.029650e-01 | 2.029654e-01 | 0.2021 | 2.029650e-01 | 2.029654e-01 | 3.8651 | 2.273829e-01 | 0.0086 |
100 | 0.1 | 4.695384e-01 | 4.695387e-01 | 0.8796 | 4.695384e-01 | 4.695387e-01 | 12.1470 | 4.812845e-01 | 0.0117 |
150 | 0.1 | 1.325870e-01 | 1.325874e-01 | 2.5595 | 1.325870e-01 | 1.325874e-01 | 49.9254 | 1.470531e-01 | 0.0144 |
200 | 0.1 | 1.442915e-01 | 1.442918e-01 | 4.8677 | 1.700139e-01 | 0.0151 | |||
250 | 0.1 | 4.210943e-01 | 4.210946e-01 | 7.1247 | 4.512736e-01 | 0.0179 | |||
300 | 0.1 | 1.547663e-01 | 1.547C71e-01 | 13.9812 | 1.673333e-01 | 0.0204 | |||
350 | 0.1 | 3.037856e-01 | 3.037861e-01 | 19.2776 | 3.293677e-01 | 0.0245 | |||
100 | 0.01 | 3.132863e-02 | 3.132868e-02 | 0.6293 | 3.132863e-02 | 3.132868e-02 | 11.4868 | 3.693282e-02 | 0.0117 |
150 | 0.01 | 1.423572e-02 | 1.423577e-02 | 1.5306 | 1.423572e-02 | 1.423577e-02 | 37.9483 | 3.092266e-02 | 0.0128 |
200 | 0.01 | 3.145664e-01 | 3.145669e-01 | 4.2319 | 3.364780e-01 | 0.0139 | |||
250 | 0.01 | 2.597103e-02 | 2.597105e-02 | 6.8963 | 2.777693e-02 | 0.0167 | |||
300 | 0.01 | 1.201043e-01 | 1.201049e-01 | 13.4639 | 1.537038e-01 | 0.0192 | |||
350 | 0.01 | 2.167836e-02 | 2.167842e-02 | 18.6749 | 2.478134e-02 | 0.0235 | |||
400 | 0.01 | 4.531146^01 | 4.531156e-01 | 24.1313 | 4.972134e-01 | 0.0263 |
SDO Method | Bisection Method | fmincon | |||||||
n | density | λ* | fvalue | time(s) | λ* | fvalue | time(s) | fvalue time(s) | |
50 | 1 | 9.963074e-02 | 9.963075e-02 | 0.2313 | 9.963074-02 | 9.963075e-02 | 3.8289 | — | |
100 | 1 | 2.954031e-02 | 2.954037e-02 | 1.0432 | 2.954031e-02 | 2.954037e-02 | 18.6609 | — | |
150 | 1 | 1.079322e-01 | L079326e-01 | 2.7307 | 1.079322e-01 | 1.079326e-01 | 47.8104 | — | |
200 | 1 | 1.594683e-01 | 1.594686e-01 | 5.8439 | — | ||||
250 | 1 | 2.374876e-01 | 2.374887e-01 | 8.5416 | — | ||||
50 | 0.5 | 2.644901e-02 | 2.644909e-02 | 0.2574 | 2.644901e-02 | 2.644909e-02 | 4.2066 | — | |
100 | 0.5 | 2.299581e-01 | 2.299585e-01 | 1.0217 | 2.299581e-01 | 2.299585e-01 | 19.3125 | ||
150 | 0.5 | 1.444501e-01 | 1.444506e-01 | 2.2918 | 1.444501e-01 | 1.444506e-01 | 44.9254 | — | |
200 | 0.5 | 3.724168e-01 | 3.724173e-01 | 5.4688 | — | ||||
250 | 0.5 | 2.552464e-01 | 2.552473e-01 | 8.2069 | — | ||||
300 | 0.5 | 2.941125e-01 | 2.941131e-01 | 16.0230 | |||||
50 | 0.25 | 1.076935e-02 | 1.076939e-02 | 0.2603 | 1.076935e-02 | 1.076939e-02 | 5.0748 | — | |
100 | 0.25 | 1.768924e-02 | 1.768927e-02 | 0.9174 | 1.768924e-02 | 1.768927e-02 | 12.5113 | — | |
150 | 0.25 | 2.993642e-01 | 2.993644e-01 | 2.0326 | 2.993642e-01 | 2.993644e-01 | 41.9702 | — | |
200 | 0.25 | 3.366870e-01 | 3.366874e-01 | 4.9010 | — | ||||
250 | 0.25 | 1.883748e-01 | 1.883755e-02 | 7.2461 | — | ||||
300 | 0.25 | 1.649437e-01 | 1.649446e-01 | 15.3795 | |||||
50 | 0.1 | 1.692921e-01 | 1.692924e-01 | 0.2097 | 1.692921e-01 | 1.692924e-01 | 3.9190 | — | |
100 | 0.1 | 1.942553e-01 | 1.942554e-01 | 0.9273 | 1.942553e-01 | 1.942554e-01 | 11.9908 | — | |
150 | 0.1 | 2.121414e-02 | 2.121419e-02 | 1.9469 | 2.121414e-02 | 2.121419e-02 | 40.4315 | — | |
200 | 0.1 | 2.737760e-01 | 2.737764e-01 | 4.8436 | — | ||||
250 | 0.1 | 1.803547e-01 | 1803554e-01 | 7.3638 | — | ||||
300 | 0.1 | 3.003607e-01 | 3.003612e-01 | 14.2789 | — | ||||
350 | 0.1 | 2.941177e-01 | 2.941187e-01 | 20.2413 | — | ||||
100 | 0.01 | 1.462551e-02 | 1.462558e-02 | 0.6089 | 1.462558e-02 | 1.462558e-02 | 11.6858 | — | |
150 | 0.01 | 1.371044e-01 | 1.371049e-01 | 1.4294 | 1.371044e-01 | 1.371049e-01 | 38.2468 | — | |
200 | 0.01 | 2.910353e-01 | 2.910355e-01 | 4.4201 | — | ||||
250 | 0.01 | 1.110103e-01 | 1.110109e-01 | 6.5731 | — | ||||
300 | 0.01 | 3.831475e-01 | 3.831484e-01 | 13.8774 | — | ||||
350 | 0.01 | 1.301978e-01 | 1.301985e-01 | 19.2763 | |||||
400 | 0.01 | 2.705236e-01 | 2.705243e-01 | 23.9422 | — |
SDO Method | Bisection Method | fmincon | |||||||
n | density | λ* | fvalue | time(s) | λ* | fvalue | time(s) | fvalue time(s) | |
50 | 1 | 9.963074e-02 | 9.963075e-02 | 0.2313 | 9.963074-02 | 9.963075e-02 | 3.8289 | — | |
100 | 1 | 2.954031e-02 | 2.954037e-02 | 1.0432 | 2.954031e-02 | 2.954037e-02 | 18.6609 | — | |
150 | 1 | 1.079322e-01 | L079326e-01 | 2.7307 | 1.079322e-01 | 1.079326e-01 | 47.8104 | — | |
200 | 1 | 1.594683e-01 | 1.594686e-01 | 5.8439 | — | ||||
250 | 1 | 2.374876e-01 | 2.374887e-01 | 8.5416 | — | ||||
50 | 0.5 | 2.644901e-02 | 2.644909e-02 | 0.2574 | 2.644901e-02 | 2.644909e-02 | 4.2066 | — | |
100 | 0.5 | 2.299581e-01 | 2.299585e-01 | 1.0217 | 2.299581e-01 | 2.299585e-01 | 19.3125 | ||
150 | 0.5 | 1.444501e-01 | 1.444506e-01 | 2.2918 | 1.444501e-01 | 1.444506e-01 | 44.9254 | — | |
200 | 0.5 | 3.724168e-01 | 3.724173e-01 | 5.4688 | — | ||||
250 | 0.5 | 2.552464e-01 | 2.552473e-01 | 8.2069 | — | ||||
300 | 0.5 | 2.941125e-01 | 2.941131e-01 | 16.0230 | |||||
50 | 0.25 | 1.076935e-02 | 1.076939e-02 | 0.2603 | 1.076935e-02 | 1.076939e-02 | 5.0748 | — | |
100 | 0.25 | 1.768924e-02 | 1.768927e-02 | 0.9174 | 1.768924e-02 | 1.768927e-02 | 12.5113 | — | |
150 | 0.25 | 2.993642e-01 | 2.993644e-01 | 2.0326 | 2.993642e-01 | 2.993644e-01 | 41.9702 | — | |
200 | 0.25 | 3.366870e-01 | 3.366874e-01 | 4.9010 | — | ||||
250 | 0.25 | 1.883748e-01 | 1.883755e-02 | 7.2461 | — | ||||
300 | 0.25 | 1.649437e-01 | 1.649446e-01 | 15.3795 | |||||
50 | 0.1 | 1.692921e-01 | 1.692924e-01 | 0.2097 | 1.692921e-01 | 1.692924e-01 | 3.9190 | — | |
100 | 0.1 | 1.942553e-01 | 1.942554e-01 | 0.9273 | 1.942553e-01 | 1.942554e-01 | 11.9908 | — | |
150 | 0.1 | 2.121414e-02 | 2.121419e-02 | 1.9469 | 2.121414e-02 | 2.121419e-02 | 40.4315 | — | |
200 | 0.1 | 2.737760e-01 | 2.737764e-01 | 4.8436 | — | ||||
250 | 0.1 | 1.803547e-01 | 1803554e-01 | 7.3638 | — | ||||
300 | 0.1 | 3.003607e-01 | 3.003612e-01 | 14.2789 | — | ||||
350 | 0.1 | 2.941177e-01 | 2.941187e-01 | 20.2413 | — | ||||
100 | 0.01 | 1.462551e-02 | 1.462558e-02 | 0.6089 | 1.462558e-02 | 1.462558e-02 | 11.6858 | — | |
150 | 0.01 | 1.371044e-01 | 1.371049e-01 | 1.4294 | 1.371044e-01 | 1.371049e-01 | 38.2468 | — | |
200 | 0.01 | 2.910353e-01 | 2.910355e-01 | 4.4201 | — | ||||
250 | 0.01 | 1.110103e-01 | 1.110109e-01 | 6.5731 | — | ||||
300 | 0.01 | 3.831475e-01 | 3.831484e-01 | 13.8774 | — | ||||
350 | 0.01 | 1.301978e-01 | 1.301985e-01 | 19.2763 | |||||
400 | 0.01 | 2.705236e-01 | 2.705243e-01 | 23.9422 | — |
SDO Method | Bisection Method | fmincon | |||||||
n | density | λ* | fvalue | time(s) | λ* | fvalue | time(s) | fvalue | time(s) |
50 | 1 | 1.073815e-01 | 1.073819e-01 | 0.2603 | 1.073815e-01 | 1.073819e-01 | 5.6108 | 1.331134e-01 | 0.0097 |
100 | 1 | 8.052910e-02 | 8.052916e-02 | 1.0407 | 8.052910e-02 | 8.052916e-02 | 23.5367 | 8.699541e-02 | 0.0117 |
150 | 1 | 3.159523e-01 | 3.159529e-01 | 2.6979 | 3.159523e-01 | 3.159529e-01 | 57.1506 | 3.692334e-02 | 0.0131 |
200 | 1 | 9.654340e-01 | 9.654352e-01 | 5.7237 | 9.654340e-01 | 9.654352e-01 | 120.0627 | 9.845699e-01 | 0.U192 |
250 | 1 | 5.314459e-01 | 5.314467e-01 | 7.9846 | 5.314459e-01 | 5.314467e-01 | 146.7938 | 5.983331e-01 | 0.0247 |
50 | 0.5 | 6.030734e-02 | 6.030738e-02 | 0.2465 | 6.030734e-02 | 6.030738e-02 | 5.2755 | 6.404861e-02 | 0.0114 |
100 | 0.5 | 7.375045e-02 | 7.375047e-02 | 0.9825 | 7.375045e-02 | 7.375047e-02 | 21.3846 | 7.915205e-02 | 0.0102 |
150 | 0.5 | 2.523155e-01 | 2.523164e-01 | 2.8862 | 2.523155e-01 | 2.523164e-01 | 50.9374 | 2.689658e-01 | 0.0133 |
2U0 | 0.5 | 1.997833e-01 | 1.997841e-01 | 5.3377 | 2.321445e-01 | 0.0158 | |||
250 | 0.5 | 4.256789e-01 | 4.256796e-01 | 7.7639 | 4.433670e-01 | 0.0239 | |||
300 | 0.5 | 6.730019e-01 | 6.730022e-01 | 12.2279 | 6.846389e-01 | 0.0268 | |||
50 | 0.25 | 1.119725e-01 | 1.119727e-01 | 0.2428 | 1.119725e-01 | 1.119727e-01 | 5.0119 | 1.289442e-01 | 0.0090 |
100 | 0.25 | 4.884773e-02 | 4.884778e-02 | 0.9657 | 4.884773e-02 | 4.884778e-02 | 14.003-1 | 5.102978e-01 | 0.0109 |
150 | 0.25 | 2.374415e-01 | 2.374418e-01 | 2.7611 | 2.374415e-01 | 2.374418e-01 | 47.1437 | 2.531947e-01 | 0.0124 |
200 | 0.25 | 3.264711e-02 | 3.264719e-02 | 5.1312 | 3.803010e-02 | 0.0144 | |||
250 | 0.25 | 5.412756e-01 | 5.412759e-01 | 7.3988 | 5.732258e-01 | 0.0216 | |||
300 | 0.25 | 1.222439e-01 | 1.222445e-01 | 12.0333 | 1.986063e-01 | 0.0253 | |||
50 | 0.1 | 1.833330e-01 | 1.833334e-01 | 0.2236 | 1.833330e-01 | 1.833334e-01 | 4.9949 | 1.970122e-01 | 0.0094 |
100 | 0.1 | 3.380843e-01 | 3.380847e-01 | 0.8375 | 3.380843e-01 | 3.380847e-01 | 17.1359 | 3.426797e-01 | 0.0112 |
150 | 0.1 | 3.348966e-01 | 3.348969e-01 | 2.4617 | 3.348966e-01 | 3.348969e-01 | 46.9201 | 3.532487e-01 | 0.0135 |
200 | 0.1 | 1.355464e-01 | 1.355466e-01 | 4.8699 | 1.836288e-01 | 0.0137 | |||
250 | 0.1 | 2.002679e-01 | 2.002685e-01 | 7.1009 | 2.321444e-01 | 0.0205 | |||
300 | 0.1 | 3.191755e-01 | 3.191761e-01 | 11.8233 | 3.274615e-01 | 0.0242 | |||
350 | 0.1 | 8.630814e-02 | 8.630823e-02 | 18.7753 | 8.949326e-01 | 0.0276 | |||
100 | 0.01 | 2.322450e-02 | 2.322456e-02 | 0.7865 | 2.322450e-02 | 2.322456e-02 | 16.7437 | 2.481309e-02 | 0.0104 |
150 | 0.01 | 5.444251e-02 | 5.444253e-02 | 2.1999 | 5.444251e-02 | 5.444253e-02 | 43.2585 | 5.613323e-02 | 0.0126 |
200 | 0.01 | 2.510731e-01 | 2.510735e-01 | 4.5176 | 2.713509e-01 | 0.0128 | |||
250 | 0.01 | 3.722411e-01 | 3.722423e-01 | 6.9452 | 3.830029e-01 | 0.0132 | |||
300 | 0.01 | 1.676625e-01 | 1.676632e-01 | 11.3290 | 1.821748e-01 | 0.0229 | |||
350 | 0.01 | 1.853554e-01 | 1.853560e-01 | 19.5423 | 1.962172e-01 | 0.0238 | |||
400 | 0.01 | 4.531146e-01 | 4.531156e-01 | 24.1313 | 4.972134e-01 | 0.0263 |
SDO Method | Bisection Method | fmincon | |||||||
n | density | λ* | fvalue | time(s) | λ* | fvalue | time(s) | fvalue | time(s) |
50 | 1 | 1.073815e-01 | 1.073819e-01 | 0.2603 | 1.073815e-01 | 1.073819e-01 | 5.6108 | 1.331134e-01 | 0.0097 |
100 | 1 | 8.052910e-02 | 8.052916e-02 | 1.0407 | 8.052910e-02 | 8.052916e-02 | 23.5367 | 8.699541e-02 | 0.0117 |
150 | 1 | 3.159523e-01 | 3.159529e-01 | 2.6979 | 3.159523e-01 | 3.159529e-01 | 57.1506 | 3.692334e-02 | 0.0131 |
200 | 1 | 9.654340e-01 | 9.654352e-01 | 5.7237 | 9.654340e-01 | 9.654352e-01 | 120.0627 | 9.845699e-01 | 0.U192 |
250 | 1 | 5.314459e-01 | 5.314467e-01 | 7.9846 | 5.314459e-01 | 5.314467e-01 | 146.7938 | 5.983331e-01 | 0.0247 |
50 | 0.5 | 6.030734e-02 | 6.030738e-02 | 0.2465 | 6.030734e-02 | 6.030738e-02 | 5.2755 | 6.404861e-02 | 0.0114 |
100 | 0.5 | 7.375045e-02 | 7.375047e-02 | 0.9825 | 7.375045e-02 | 7.375047e-02 | 21.3846 | 7.915205e-02 | 0.0102 |
150 | 0.5 | 2.523155e-01 | 2.523164e-01 | 2.8862 | 2.523155e-01 | 2.523164e-01 | 50.9374 | 2.689658e-01 | 0.0133 |
2U0 | 0.5 | 1.997833e-01 | 1.997841e-01 | 5.3377 | 2.321445e-01 | 0.0158 | |||
250 | 0.5 | 4.256789e-01 | 4.256796e-01 | 7.7639 | 4.433670e-01 | 0.0239 | |||
300 | 0.5 | 6.730019e-01 | 6.730022e-01 | 12.2279 | 6.846389e-01 | 0.0268 | |||
50 | 0.25 | 1.119725e-01 | 1.119727e-01 | 0.2428 | 1.119725e-01 | 1.119727e-01 | 5.0119 | 1.289442e-01 | 0.0090 |
100 | 0.25 | 4.884773e-02 | 4.884778e-02 | 0.9657 | 4.884773e-02 | 4.884778e-02 | 14.003-1 | 5.102978e-01 | 0.0109 |
150 | 0.25 | 2.374415e-01 | 2.374418e-01 | 2.7611 | 2.374415e-01 | 2.374418e-01 | 47.1437 | 2.531947e-01 | 0.0124 |
200 | 0.25 | 3.264711e-02 | 3.264719e-02 | 5.1312 | 3.803010e-02 | 0.0144 | |||
250 | 0.25 | 5.412756e-01 | 5.412759e-01 | 7.3988 | 5.732258e-01 | 0.0216 | |||
300 | 0.25 | 1.222439e-01 | 1.222445e-01 | 12.0333 | 1.986063e-01 | 0.0253 | |||
50 | 0.1 | 1.833330e-01 | 1.833334e-01 | 0.2236 | 1.833330e-01 | 1.833334e-01 | 4.9949 | 1.970122e-01 | 0.0094 |
100 | 0.1 | 3.380843e-01 | 3.380847e-01 | 0.8375 | 3.380843e-01 | 3.380847e-01 | 17.1359 | 3.426797e-01 | 0.0112 |
150 | 0.1 | 3.348966e-01 | 3.348969e-01 | 2.4617 | 3.348966e-01 | 3.348969e-01 | 46.9201 | 3.532487e-01 | 0.0135 |
200 | 0.1 | 1.355464e-01 | 1.355466e-01 | 4.8699 | 1.836288e-01 | 0.0137 | |||
250 | 0.1 | 2.002679e-01 | 2.002685e-01 | 7.1009 | 2.321444e-01 | 0.0205 | |||
300 | 0.1 | 3.191755e-01 | 3.191761e-01 | 11.8233 | 3.274615e-01 | 0.0242 | |||
350 | 0.1 | 8.630814e-02 | 8.630823e-02 | 18.7753 | 8.949326e-01 | 0.0276 | |||
100 | 0.01 | 2.322450e-02 | 2.322456e-02 | 0.7865 | 2.322450e-02 | 2.322456e-02 | 16.7437 | 2.481309e-02 | 0.0104 |
150 | 0.01 | 5.444251e-02 | 5.444253e-02 | 2.1999 | 5.444251e-02 | 5.444253e-02 | 43.2585 | 5.613323e-02 | 0.0126 |
200 | 0.01 | 2.510731e-01 | 2.510735e-01 | 4.5176 | 2.713509e-01 | 0.0128 | |||
250 | 0.01 | 3.722411e-01 | 3.722423e-01 | 6.9452 | 3.830029e-01 | 0.0132 | |||
300 | 0.01 | 1.676625e-01 | 1.676632e-01 | 11.3290 | 1.821748e-01 | 0.0229 | |||
350 | 0.01 | 1.853554e-01 | 1.853560e-01 | 19.5423 | 1.962172e-01 | 0.0238 | |||
400 | 0.01 | 4.531146e-01 | 4.531156e-01 | 24.1313 | 4.972134e-01 | 0.0263 |
SDO Method | Bisection Method | fmincon | |||||||
n | density | λ* | fvalue | time(s) | λ* | fvalue | time(s) | fvalue time(s) | |
50 | 1 | 1.579354e-01 | 1.579359e-01 | 0.2742 | 1.579354e-01 | 1.579359e-01 | 5.1885 | — | |
100 | 1 | 5.214084e-02 | 5.214087e-02 | 0.9871 | 5.214084e-02 | 5.214087e-02 | 23.9418 | — | |
150 | 1 | 2.951871e-02 | 2.951876e-02 | 2.5428 | 2.951871e-02 | 2.951876e-02 | 56.8249 | — | |
200 | 1 | 4.437936e-01 | 4.437943e-01 | 5.2411 | |||||
250 | 1 | 1.302289e-01 | 1.302295e-01 | 7.5028 | — | ||||
50 | 0.5 | 2.984366e-02 | 2.984369e-02 | 0.2527 | 2.984366e-02 | 2.984369e-02 | 5.0748 | — | |
100 | 0.5 | 2.547812e-02 | 2.547816e-02 | 0.7961 | 2.547812e-02 | 2.547816e-02 | 19.8679 | — | |
150 | 0.5 | 1.330274e-01 | 1.330278e-01 | 2.2318 | 1.330274e-01 | 1.330278e-01 | 55.3997 | — | |
200 | 0.5 | 4.219078e-01 | 4.219083e-01 | 5.2065 | — | ||||
250 | 0.5 | 2.903107e-01 | 2.903111e-01 | 7.1589 | |||||
300 | 0.5 | 3.600279e-02 | 3.600286e-01 | 13.2012 | — | ||||
50 | 0.25 | 1.742665e-02 | 1.742669e-02 | 0.2375 | 1.742665e-02 | 1.742669e-02 | 4.9128 | — | |
100 | 0.25 | 6.999637e-02 | 6.999639e-02 | 0.7539 | 6.999637e-02 | 6.999639e-02 | 19.2247 | — | |
150 | 0.25 | 2.181804e-02 | 2.181807e-02 | 2.1246 | 2.181804e-02 | 2.181807e-02 | 54.8697 | — | |
200 | 0.25 | 1.898546e-01 | 1.898552e-01 | 4.9963 | - - | ||||
250 | 0.25 | 4.199379e-01 | 4.199380e-01 | 6.8883 | — | ||||
300 | 0.25 | 2.342168e-01 | 2.342173e-01 | 12.9771 | — | ||||
50 | 0.1 | 2.254114e-02 | 2.254117e-02 | 0.2162 | 2.254114e-02 | 2.254117e-02 | 4.3246 | — | |
100 | 0.1 | 1.947362e-02 | 1.947365e-02 | 0.6987 | 1.947362e-02 | 1.947365e-02 | 18.9781 | — | |
150 | 0.1 | 1.596201e-01 | 1.596206e-01 | 1.9342 | 1.596201e-01 | 1.596206e-01 | 52.7639 | — | |
200 | 0.1 | 2.603211e-01 | 2.603213e-01 | 4.5136 | — | ||||
250 | 0.1 | 2.274938e-01 | 2.274946e-01 | 6.2734 | — | ||||
300 | 0.1 | 1.757963e-01 | 1.757970e-01 | 12.4938 | — | ||||
100 | 0.01 | 1.977456e-02 | 1.977458e-02 | 0.7276 | 1.977456e-02 | 1.977458e-02 | 4.1807 | — | |
150 | 0.01 | 6.123555e-02 | 6.123557e-02 | 1.5383 | 6.123555e-02 | 6.123557e-02 | 50.9088 | — | |
200 | 0.01 | 9.402653e-02 | 9.402659e-02 | 4.2944 | — | ||||
250 | 0.01 | 2.351025e-01 | 2.351028e-01 | 5.8472 | — | ||||
300 | 0.01 | 1.639947e-01 | 1.639959e-01 | 11.8967 | — | ||||
350 | 0.01 | 2.486289e-01 | 2.486296e-01 | 20.1709 | — | ||||
400 | 0.01 | 2.519726e-01 | 2.519735e-01 | 25.0546 | — |
SDO Method | Bisection Method | fmincon | |||||||
n | density | λ* | fvalue | time(s) | λ* | fvalue | time(s) | fvalue time(s) | |
50 | 1 | 1.579354e-01 | 1.579359e-01 | 0.2742 | 1.579354e-01 | 1.579359e-01 | 5.1885 | — | |
100 | 1 | 5.214084e-02 | 5.214087e-02 | 0.9871 | 5.214084e-02 | 5.214087e-02 | 23.9418 | — | |
150 | 1 | 2.951871e-02 | 2.951876e-02 | 2.5428 | 2.951871e-02 | 2.951876e-02 | 56.8249 | — | |
200 | 1 | 4.437936e-01 | 4.437943e-01 | 5.2411 | |||||
250 | 1 | 1.302289e-01 | 1.302295e-01 | 7.5028 | — | ||||
50 | 0.5 | 2.984366e-02 | 2.984369e-02 | 0.2527 | 2.984366e-02 | 2.984369e-02 | 5.0748 | — | |
100 | 0.5 | 2.547812e-02 | 2.547816e-02 | 0.7961 | 2.547812e-02 | 2.547816e-02 | 19.8679 | — | |
150 | 0.5 | 1.330274e-01 | 1.330278e-01 | 2.2318 | 1.330274e-01 | 1.330278e-01 | 55.3997 | — | |
200 | 0.5 | 4.219078e-01 | 4.219083e-01 | 5.2065 | — | ||||
250 | 0.5 | 2.903107e-01 | 2.903111e-01 | 7.1589 | |||||
300 | 0.5 | 3.600279e-02 | 3.600286e-01 | 13.2012 | — | ||||
50 | 0.25 | 1.742665e-02 | 1.742669e-02 | 0.2375 | 1.742665e-02 | 1.742669e-02 | 4.9128 | — | |
100 | 0.25 | 6.999637e-02 | 6.999639e-02 | 0.7539 | 6.999637e-02 | 6.999639e-02 | 19.2247 | — | |
150 | 0.25 | 2.181804e-02 | 2.181807e-02 | 2.1246 | 2.181804e-02 | 2.181807e-02 | 54.8697 | — | |
200 | 0.25 | 1.898546e-01 | 1.898552e-01 | 4.9963 | - - | ||||
250 | 0.25 | 4.199379e-01 | 4.199380e-01 | 6.8883 | — | ||||
300 | 0.25 | 2.342168e-01 | 2.342173e-01 | 12.9771 | — | ||||
50 | 0.1 | 2.254114e-02 | 2.254117e-02 | 0.2162 | 2.254114e-02 | 2.254117e-02 | 4.3246 | — | |
100 | 0.1 | 1.947362e-02 | 1.947365e-02 | 0.6987 | 1.947362e-02 | 1.947365e-02 | 18.9781 | — | |
150 | 0.1 | 1.596201e-01 | 1.596206e-01 | 1.9342 | 1.596201e-01 | 1.596206e-01 | 52.7639 | — | |
200 | 0.1 | 2.603211e-01 | 2.603213e-01 | 4.5136 | — | ||||
250 | 0.1 | 2.274938e-01 | 2.274946e-01 | 6.2734 | — | ||||
300 | 0.1 | 1.757963e-01 | 1.757970e-01 | 12.4938 | — | ||||
100 | 0.01 | 1.977456e-02 | 1.977458e-02 | 0.7276 | 1.977456e-02 | 1.977458e-02 | 4.1807 | — | |
150 | 0.01 | 6.123555e-02 | 6.123557e-02 | 1.5383 | 6.123555e-02 | 6.123557e-02 | 50.9088 | — | |
200 | 0.01 | 9.402653e-02 | 9.402659e-02 | 4.2944 | — | ||||
250 | 0.01 | 2.351025e-01 | 2.351028e-01 | 5.8472 | — | ||||
300 | 0.01 | 1.639947e-01 | 1.639959e-01 | 11.8967 | — | ||||
350 | 0.01 | 2.486289e-01 | 2.486296e-01 | 20.1709 | — | ||||
400 | 0.01 | 2.519726e-01 | 2.519735e-01 | 25.0546 | — |
[1] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[2] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[3] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[4] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[5] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[6] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[7] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[8] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[9] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[10] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[11] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[12] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[13] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[14] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[15] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[16] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[17] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[18] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[19] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[20] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]