\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

$ H_{\infty} $ observer-based control for large-scale systems with sparse observer communication network

  • * Corresponding author: Junlin Xiong

    * Corresponding author: Junlin Xiong 
This work was supported by National Natural Science Foundation of China under Grant 61773357
Abstract / Introduction Full Text(HTML) Figure(3) / Table(1) Related Papers Cited by
  • This paper studies the $ H_{\infty} $ control problem for large-scale systems under a sparse observer communication network. Different from existing approaches, where the topology of the observer communication network is fixed, we aim to design the sparse observer communication network such that the closed-loop system is asymptotically stable and satisfies the $ H_{\infty} $ performance. Firstly, sufficient conditions are established to design the distributed $ H_{\infty} $ observer and controller gains in terms of LMIs. Then, the developed sufficient conditions are used to minimize the number of the links in the observer communication network. Two numerical algorithms are proposed to solve the sparse observer communication network design problem. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.

    Mathematics Subject Classification: Primary: 93C15, 93B36; Secondary: 49N35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Sparse observer topology structure of large-scale systems

    Figure 2.  Trajectories of system states and their estimations

    Figure 3.  Number of observer network links for different $ H_{\infty} $ performance levels

    Algorithm 2 Sparse Observer Communication Network Link Design
    (1) Choose a small enough scalar $ \delta>0 $. Initialize $ \theta_{ij}^{(0)}=1 $ for all $ i\neq j $. Let $ k\leftarrow1 $.
    (2) Solve the optimization problem (12) with $ \theta_{ij}=\theta_{ij}^{(k-1)} $ to find the optimal solution $ Z^{(k)} $.
    (3) Construct the index set $ I=\left\{{(i,j) \mid \left\lVert{\mathrm{vec}(Z^{(k)}_{ij})}\right\rVert_{1}<\delta, \theta_{ij}=1, i\neq j}\right\} $. If $ I $ is an empty set, then go to step (5). Otherwise, select $ (i^{*},j^{*}) = {\rm{arg\;min}}_{(i,j)\in I} \left\lVert{\mathrm{vec}(Z^{(k)}_{ij})}\right\rVert_{1} $.
    (4) Update the links $ \theta_{ij}^{(k)}=\theta_{ij}^{(k-1)} $ except that $ \theta_{i^{*}j^{*}}^{(k)}=0 $. Let $ k\leftarrow k+1 $ and go to Step (2).
    (5) Let $ \theta_{ij}=\theta_{ij}^{(k-1)} $. Solve the LMI (9) and design the controller and observer gains as $ K_{i}=Y_{i}X_{i}^{-1} $, $ L_{ij}=Q_{ij}^{-1}Z_{ij} $, respectively.
     | Show Table
    DownLoad: CSV
  • [1] A. ArghaL. Li and S. W. Su, Design of $H_{2}$ ($H_{\infty}$)-based optimal structured and sparse static output feedback gains, Journal of the Franklin Institute, 354 (2017), 4156-4178.  doi: 10.1016/j.jfranklin.2017.03.011.
    [2] P. BennerR. Lowe and M. Voigt, $L_{\infty}$-norm computation for large-scale descriptor systems using structured iterative eigensolvers, Numerical Algebra, Control & Optimization, 8 (2018), 119-133.  doi: 10.3934/naco.2018007.
    [3] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994. doi: 10.1137/1.9781611970777.
    [4] E. J. CandesM. B. Wakin and S. P. Boyd, Enhancing sparsity by reweighted $\ell_{1}$ minimization, Journal of Fourier Analysis and Applications, 14 (2008), 877-905.  doi: 10.1007/s00041-008-9045-x.
    [5] X. Chen, J. Lam, P. Li and Z. Shu, $L_{1}$-induced performance analysis and sparse controller synthesis for interval positive systems, in Proceedings of the World Congress on Engineering, 2013.
    [6] R. D'Andrea and G. E. Dullerud, Distributed control design for spatially interconnected systems, IEEE Transactions on Automatic Control, 48 (2003), 1478-1495.  doi: 10.1109/TAC.2003.816954.
    [7] M. FardadF. Lin and M. R. Jovanovic, Design of optimal sparse interconnection graphs for synchronization of oscillator networks, IEEE Transactions on Automatic Control, 59 (2014), 2457-2462.  doi: 10.1109/TAC.2014.2301577.
    [8] P. Gahinet and P. Apkarian, A linear matrix inequality approach to $H_{\infty}$ control, International Journal of Robust and Nonlinear Control, 4 (1994), 421-448.  doi: 10.1002/rnc.4590040403.
    [9] T. IshizakiH. SandbergK. KashimaJ. Imura and K. Aihara, Dissipativity-preserving model reduction for large-scale distributed control systems, IEEE Transactions on Automatic Control, 60 (2015), 1023-1037.  doi: 10.1109/TAC.2014.2370271.
    [10] J. LiQ. ZhangJ. Ren and Y. Zhang, Robust decentralised stabilisation of uncertain large-scale interconnected nonlinear descriptor systems via proportional plus derivative feedback, International Journal of Systems Science, 48 (2017), 2997-3006.  doi: 10.1080/00207721.2017.1367428.
    [11] F. LinM. Fardad and M. R. Jovanovic, Design of optimal sparse feedback gains via the alternating direction method of multipliers, IEEE Transactions on Automatic Control, 58 (2013), 2426-2431.  doi: 10.1109/TAC.2013.2257618.
    [12] J. Lofberg, YALMIP: A toolbox for modeling and optimization in MATLAB, in Proceedings of the IEEE International Symposium on Computer Aided Control Systems Design, (2004), 284-289.
    [13] M. MazoA. Anta and P. Tabuada, An ISS self-triggered implementation of linear controllers, Automatica, 46 (2010), 1310-1314.  doi: 10.1016/j.automatica.2010.05.009.
    [14] M. MohamedX. G. YanS. K. Spurgeon and B. Jiang, Robust sliding-mode observers for large-scale systems with application to a multimachine power system, IET Control Theory & Applications, 11 (2016), 1307-1315.  doi: 10.1049/iet-cta.2016.1204.
    [15] Z. RazavinasabM. M. Farsangi and M. Barkhordari, State estimation-based distributed model predictive control of large-scale networked systems with communication delays, IET Control Theory & Applications, 11 (2017), 2497-2505.  doi: 10.1049/iet-cta.2016.1649.
    [16] M. Razeghi-Jahromi and A. Seyedi, Stabilization of distributed networked control systems with minimal communications network, in Proceedings of the American Control Conference, (2011), 515-520.
    [17] M. Razeghi-Jahromi and A. Seyedi, Stabilization of networked control systems with sparse observer-controller networks, IEEE Transactions on Automatic Control, 60 (2015), 1686-1691.  doi: 10.1109/TAC.2014.2360310.
    [18] M. Rotkowitz and S. Lall, A characterization of convex problems in decentralized control, IEEE Transactions on Automatic Control, 51 (2006), 274-286.  doi: 10.1109/TAC.2005.860365.
    [19] N. SandellP. VaraiyaM. Athans and M. Safonov, Survey of decentralized control methods for large scale systems, IEEE Transactions on Automatic Control, 23 (1978), 108-128.  doi: 10.1109/tac.1978.1101704.
    [20] S. SchulerP. LiJ. Lam and F. Allgöwer, Design of structured dynamic output-feedback controllers for interconnected systems, International Journal of Control, 84 (2011), 2081-2091.  doi: 10.1080/00207179.2011.634029.
    [21] S. SchulerU. Münz and F. Allgöwer, Decentralized state feedback control for interconnected systems with application to power systems, Journal of Process Control, 24 (2014), 379-388. 
    [22] P. Shah and P. A. Parrilo, $H_{2}$-optimal decentralized control over posets: a state-space solution for state-feedback, IEEE Transactions on Automatic Control, 58 (2013), 3084-3096.  doi: 10.1109/TAC.2013.2281881.
    [23] J. F. Sturm, Using SeDuMi 1.02, A MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software, 11 (1999), 625-653.  doi: 10.1080/10556789908805766.
    [24] K. K. TanS. Huang and T. H. Lee, Decentralized adaptive controller design of large-scale uncertain robotic systems, Automatica, 45 (2009), 161-166.  doi: 10.1016/j.automatica.2008.06.005.
    [25] X.-G. YanQ. ZhangS. K. SpurgeonQ. Zhu and L. M. Fridman, Decentralised control for complex systems - An invited survey, International Journal of Modelling, Identification and Control, 22 (2014), 285-297. 
    [26] J. YoneyamaM. NishikawaH. Katayama and A. Ichikawa, Output stabilization of Takagi-Sugeno fuzzy systems, Fuzzy Sets and Systems, 111 (2000), 253-266.  doi: 10.1016/S0165-0114(98)00121-3.
    [27] A. I. Zecevic and D. D. Siljak, Global low-rank enhancement of decentralized control for large-scale systems, IEEE Transactions on Automatic Control, 50 (2005), 740-744.  doi: 10.1109/TAC.2005.847054.
    [28] Z. ZhouB. De SchutterS. Lin and Y. Xi, Multi-agent model-based predictive control for large-scale urban traffic networks using a serial scheme, IET Control Theory & Applications, 9 (2014), 475-484.  doi: 10.1049/iet-cta.2014.0490.
    [29] K. Zhou and P. P. Khargonekar, Robust stabilization of linear systems with norm-bounded time-varying uncertainty, Systems & Control Letters, 10 (1988), 17-20.  doi: 10.1016/0167-6911(88)90034-5.
    [30] Y. ZhuF. Yang and Q. L. Han, Simultaneous $H_{\infty}$ stabilisation for distributed networked multimode control systems with multiple packet dropouts, IET Control Theory & Applications, 10 (2016), 625-636.  doi: 10.1049/iet-cta.2015.0563.
  • 加载中

Figures(3)

Tables(1)

SHARE

Article Metrics

HTML views(2391) PDF downloads(378) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return