September  2020, 10(3): 345-354. doi: 10.3934/naco.2020006

Sliding mode control for uncertain T-S fuzzy systems with input and state delays

School of science, Shenyang University of Technology, Shenyang, Liaoning 110870, China

* Corresponding author: Ruxia Zhang

Received  May 2019 Revised  August 2019 Published  February 2020

Fund Project: The first author is supported by is supported by National Nature Science Foundation under grant NO.61673099 and Provincial Education Department Key Project (LZGD2017039)

In this paper, the problem of sliding mode control (SMC) for uncertain T-S (Tagaki-Sugeno) fuzzy systems with input and state delays is investigated, in which the nonlinear uncertain terms are unknown, and also unmatched. For the T-S fuzzy model of the controlled object, a method based on sliding mode compensator is designed, and the system is controlled by sliding mode. Based on solving linear matrix inequalities (LMI), we obtain the design method of sliding mode and controller. The sufficient conditions for the asymptotical stability of the sliding mode dynamics are given by using LMI technique and the Lyapunov stability theory, and it has been shown that the state trajectories can be driven onto the sliding surface in a finite time. Finally, a numerical example is provided to illustrate the effectiveness of the proposed theories.

Citation: Yuan Li, Ruxia Zhang, Yi Zhang, Bo Yang. Sliding mode control for uncertain T-S fuzzy systems with input and state delays. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 345-354. doi: 10.3934/naco.2020006
References:
[1]

AbdennebiNizar and Mansour, A new sliding function for discrete predictive sliding mode control of time delay systems, International Journal of Automation and Computing, 10 (2013), 288-295.   Google Scholar

[2]

P. Balasubramaniam and T. Senthilkumar, Delay - Dependent robust stabilization and H$\infty$ control for uncertain stochastic T-S fuzzy systems with discrete interval and distributed time-varying delays, International Journal of Automation & Computing, 10 (2013), 18-31.   Google Scholar

[3]

T. S. ChiangC. S. Chiu and P. Liu, Adaptive TS-FNN control for a class of uncertain multi-time-delay systems: The exponentially stable sliding mode- based approach, International Journal of Adaptive Control & Signal Processing, 23 (2010), 378-399.   Google Scholar

[4]

Q. GaoH. Huang and G. Feng, Robust H$\infty$ stabilization of uncertain T-S fuzzy systems via dynamic integral sliding mode control, Ifac Proceedings Volumes, 46 (2013), 485-490.   Google Scholar

[5]

S. GuoF. Zhu and L. Xu, Unknown input observer design for Takagi-Sugeno fuzzy stochastic system, International Journal of Control Automation & Systems, 13 (2015), 1003-1009.   Google Scholar

[6]

C. HanG. Zhang and L. Wu, Sliding mode control of T-S fuzzy descriptor systems with time-delay, Journal of the Franklin Institute, 349 (2012), 1430-1444.  doi: 10.1016/j.jfranklin.2011.07.001.  Google Scholar

[7]

M. KchaouH. Gassara and A. E. Hajjaji, Dissipativity-based integral sliding mode control for a class of Takagi-Sugeno fuzzy singular systems with time-varying delay, Control Theory & Applications Iet, 8 (2014), 2045-2054.  doi: 10.1049/iet-cta.2014.0101.  Google Scholar

[8]

Y. M. Li and Y. Y. Li, Fuzzy control for nonlinear uncertain T-S fuzzy systems with time-varying delays, Applied Mechanics and Materials, 6 (2013), 341-342.   Google Scholar

[9]

R. Li and Q. Zhang, Robust H$_\infty$ sliding mode observer design for a class of Takagi-Sugeno fuzzy descriptor systems with time-varying delay, Applied Mathematics & Computation, 337 (2018), 158-178.  doi: 10.1016/j.amc.2018.05.008.  Google Scholar

[10]

Z. Liu and C. Gao, A new result on robust H$\infty$ control for uncertain time-delay singular systems via sliding mode control, Complexity, 21 (2016), 165-177.  doi: 10.1002/cplx.21793.  Google Scholar

[11]

R. M. Nagarale and B. M. Patre, Exponential function based fuzzy sliding mode control of uncertain nonlinear systems, International Journal of Dynamics & Control, 4 (2016), 67-75.  doi: 10.1007/s40435-014-0117-2.  Google Scholar

[12]

T. Niknam and M. H. Khooban, Fuzzy sliding mode control scheme for a class of non-linear uncertain chaotic systems, Iet Science Measurement & Technology, 7 (2013), 249-255.   Google Scholar

[13]

L. RenS. Xie and Z. G. Miao, Fuzzy robust sliding mode control of a class of uncertain systems, Journal of Central South University, 23 (2016), 2296-2304.   Google Scholar

[14]

D. B. Salem and W. Saad, Integral sliding mode control for systems with time-varying input and state delays, International Conference on Engineering & Mis, (2017), 978–982.  Google Scholar

[15]

A. Si-AmmourS. Djennoune and M. Bettayeb, A sliding mode control for linear fractional systems with input and state delays, Communications in Nonlinear Science & Numerical Simulation, 14 (2009), 2310-2318.  doi: 10.1016/j.cnsns.2008.05.011.  Google Scholar

[16]

H. WangB. Zhou and R. Lu, New stability and stabilization criteria for a class of fuzzy singular systems with time-varying delay, Journal of the Franklin Institute, 351 (2014), 3766-3781.  doi: 10.1016/j.jfranklin.2013.02.030.  Google Scholar

[17]

Y. WangY. Xia and H. Li, A new integral sliding mode design method for nonlinear stochastic systems, Automatica, 90 (2018), 304-309.  doi: 10.1016/j.automatica.2017.11.029.  Google Scholar

[18]

J. Wu, Robust stabilization for uncertain T-S fuzzy singular system, International Journal of Machine Learning & Cybernetics, 7 (2016), 699-706.   Google Scholar

[19]

Y. XiaH. YangM. Fu and P. Shi, Sliding mode control for linear systems with time-varying input and state delays, Circuits Systems, and Signal Processing, 30 (2011), 629-641.  doi: 10.1007/s00034-010-9237-x.  Google Scholar

[20]

L. XiaoH. Su and J. Chu, Sliding mode prediction tracking control design for uncertain systems, Asian Journal of Control, 9 (2010), 317-325.  doi: 10.1111/j.1934-6093.2007.tb00417.x.  Google Scholar

[21]

X. G. YanS. Spurgeon and Y. Korlov, Output feedback control synthesis for non-linear time- delay systems using a sliding-mode observer, IMA Journal of Mathematical Control and Information, 31 (2014), 501-518.  doi: 10.1093/imamci/dnt028.  Google Scholar

[22]

S. Y. Yoon and Z. Lin, Robust output regulation of linear time-delay systems: A state predictor approach, International Journal of Robust & Nonlinear Control, 26 (2016), 1686-1740.  doi: 10.1002/rnc.3374.  Google Scholar

[23]

J. Yu and Z. Yi, Stability analysis and fuzzy control for uncertain delayed T-S nonlinear systems, International Journal of Fuzzy Systems, 18 (2016), 1-8.  doi: 10.1007/s40815-016-0203-z.  Google Scholar

[24]

Y. Zhang, Robust stability and H$\infty$ control of discrete-time uncertain impulsive systems with time-varying delay, Circuits Systems & Signal Processing, 35 (2016), 3882-3912.   Google Scholar

[25]

Y. ZhaoJ. Shen and D. Chen, New stability criterion for discrete-time genetic regulatory networks with time-varying delays and stochastic disturbances, Mathematical Problems in Engineering, 2016 (2016), 1-13.  doi: 10.1155/2016/7634680.  Google Scholar

show all references

References:
[1]

AbdennebiNizar and Mansour, A new sliding function for discrete predictive sliding mode control of time delay systems, International Journal of Automation and Computing, 10 (2013), 288-295.   Google Scholar

[2]

P. Balasubramaniam and T. Senthilkumar, Delay - Dependent robust stabilization and H$\infty$ control for uncertain stochastic T-S fuzzy systems with discrete interval and distributed time-varying delays, International Journal of Automation & Computing, 10 (2013), 18-31.   Google Scholar

[3]

T. S. ChiangC. S. Chiu and P. Liu, Adaptive TS-FNN control for a class of uncertain multi-time-delay systems: The exponentially stable sliding mode- based approach, International Journal of Adaptive Control & Signal Processing, 23 (2010), 378-399.   Google Scholar

[4]

Q. GaoH. Huang and G. Feng, Robust H$\infty$ stabilization of uncertain T-S fuzzy systems via dynamic integral sliding mode control, Ifac Proceedings Volumes, 46 (2013), 485-490.   Google Scholar

[5]

S. GuoF. Zhu and L. Xu, Unknown input observer design for Takagi-Sugeno fuzzy stochastic system, International Journal of Control Automation & Systems, 13 (2015), 1003-1009.   Google Scholar

[6]

C. HanG. Zhang and L. Wu, Sliding mode control of T-S fuzzy descriptor systems with time-delay, Journal of the Franklin Institute, 349 (2012), 1430-1444.  doi: 10.1016/j.jfranklin.2011.07.001.  Google Scholar

[7]

M. KchaouH. Gassara and A. E. Hajjaji, Dissipativity-based integral sliding mode control for a class of Takagi-Sugeno fuzzy singular systems with time-varying delay, Control Theory & Applications Iet, 8 (2014), 2045-2054.  doi: 10.1049/iet-cta.2014.0101.  Google Scholar

[8]

Y. M. Li and Y. Y. Li, Fuzzy control for nonlinear uncertain T-S fuzzy systems with time-varying delays, Applied Mechanics and Materials, 6 (2013), 341-342.   Google Scholar

[9]

R. Li and Q. Zhang, Robust H$_\infty$ sliding mode observer design for a class of Takagi-Sugeno fuzzy descriptor systems with time-varying delay, Applied Mathematics & Computation, 337 (2018), 158-178.  doi: 10.1016/j.amc.2018.05.008.  Google Scholar

[10]

Z. Liu and C. Gao, A new result on robust H$\infty$ control for uncertain time-delay singular systems via sliding mode control, Complexity, 21 (2016), 165-177.  doi: 10.1002/cplx.21793.  Google Scholar

[11]

R. M. Nagarale and B. M. Patre, Exponential function based fuzzy sliding mode control of uncertain nonlinear systems, International Journal of Dynamics & Control, 4 (2016), 67-75.  doi: 10.1007/s40435-014-0117-2.  Google Scholar

[12]

T. Niknam and M. H. Khooban, Fuzzy sliding mode control scheme for a class of non-linear uncertain chaotic systems, Iet Science Measurement & Technology, 7 (2013), 249-255.   Google Scholar

[13]

L. RenS. Xie and Z. G. Miao, Fuzzy robust sliding mode control of a class of uncertain systems, Journal of Central South University, 23 (2016), 2296-2304.   Google Scholar

[14]

D. B. Salem and W. Saad, Integral sliding mode control for systems with time-varying input and state delays, International Conference on Engineering & Mis, (2017), 978–982.  Google Scholar

[15]

A. Si-AmmourS. Djennoune and M. Bettayeb, A sliding mode control for linear fractional systems with input and state delays, Communications in Nonlinear Science & Numerical Simulation, 14 (2009), 2310-2318.  doi: 10.1016/j.cnsns.2008.05.011.  Google Scholar

[16]

H. WangB. Zhou and R. Lu, New stability and stabilization criteria for a class of fuzzy singular systems with time-varying delay, Journal of the Franklin Institute, 351 (2014), 3766-3781.  doi: 10.1016/j.jfranklin.2013.02.030.  Google Scholar

[17]

Y. WangY. Xia and H. Li, A new integral sliding mode design method for nonlinear stochastic systems, Automatica, 90 (2018), 304-309.  doi: 10.1016/j.automatica.2017.11.029.  Google Scholar

[18]

J. Wu, Robust stabilization for uncertain T-S fuzzy singular system, International Journal of Machine Learning & Cybernetics, 7 (2016), 699-706.   Google Scholar

[19]

Y. XiaH. YangM. Fu and P. Shi, Sliding mode control for linear systems with time-varying input and state delays, Circuits Systems, and Signal Processing, 30 (2011), 629-641.  doi: 10.1007/s00034-010-9237-x.  Google Scholar

[20]

L. XiaoH. Su and J. Chu, Sliding mode prediction tracking control design for uncertain systems, Asian Journal of Control, 9 (2010), 317-325.  doi: 10.1111/j.1934-6093.2007.tb00417.x.  Google Scholar

[21]

X. G. YanS. Spurgeon and Y. Korlov, Output feedback control synthesis for non-linear time- delay systems using a sliding-mode observer, IMA Journal of Mathematical Control and Information, 31 (2014), 501-518.  doi: 10.1093/imamci/dnt028.  Google Scholar

[22]

S. Y. Yoon and Z. Lin, Robust output regulation of linear time-delay systems: A state predictor approach, International Journal of Robust & Nonlinear Control, 26 (2016), 1686-1740.  doi: 10.1002/rnc.3374.  Google Scholar

[23]

J. Yu and Z. Yi, Stability analysis and fuzzy control for uncertain delayed T-S nonlinear systems, International Journal of Fuzzy Systems, 18 (2016), 1-8.  doi: 10.1007/s40815-016-0203-z.  Google Scholar

[24]

Y. Zhang, Robust stability and H$\infty$ control of discrete-time uncertain impulsive systems with time-varying delay, Circuits Systems & Signal Processing, 35 (2016), 3882-3912.   Google Scholar

[25]

Y. ZhaoJ. Shen and D. Chen, New stability criterion for discrete-time genetic regulatory networks with time-varying delays and stochastic disturbances, Mathematical Problems in Engineering, 2016 (2016), 1-13.  doi: 10.1155/2016/7634680.  Google Scholar

Figure 1.  Trajectory of state $ x_{1}(t) $ before adding controller
Figure 2.  Trajectory of state $ x_{2}(t) $ before adding controller
Figure 3.  control input signal
Figure 4.  Trajectory of state $ x_{1}(t) $ after adding controller
Figure 5.  Trajectory of state $ x_{2}(t) $ after adding controller
Figure 6.  Trajectory of sliding mode variable
[1]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[2]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[3]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[4]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[5]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[8]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[9]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[10]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[11]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[12]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[13]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[14]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[15]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[16]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[17]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[18]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[19]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[20]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

 Impact Factor: 

Metrics

  • PDF downloads (123)
  • HTML views (368)
  • Cited by (0)

Other articles
by authors

[Back to Top]