September  2020, 10(3): 355-366. doi: 10.3934/naco.2020007

An improved ARMA(1, 1) type fuzzy time series applied in predicting disordering

1. 

Department of Basic, Shenyang University of Technology, Liaoyang, 111000, China, Department of Mathematics, Northeastern University, Shenyang, 110004, China

2. 

Department of Mathematics, Northeastern University, Shenyang, 110004, China

* Corresponding author: Tie Zhang

Received  May 2019 Revised  October 2019 Published  February 2020

Fund Project: This work is supported by the State Key Laboratory of Synthetical Automation for Process Industries Fundamental Research Funds, No. 2013ZCX02

Fuzzy time series shows great advantages in dealing with incomplete or unreasonable data. But most of them are based on fuzzy AR time series model, so it is necessary to add MA variables to the fuzzy time series [10] to make it more accurate. An improved ARMA(1, 1) type fuzzy time series based on fuzzy logic group relations including fuzzy MA variables along with fuzzy AR variables was proposed in this paper. To take full account of the errors, the prediction errors were added to the forecast fuzzy sets, and it made the first-order fuzzy logical relationship sets more exact. In order to verify the advantage of the proposed method, it was applied to predict the stock prices of State Bank of India (SBI) and the packet disordering from a common source host in the Northeast University to www. yahoo. com. The experimental results showed that the proposed model was more precise than other models.

Citation: Zhi Liu, Tie Zhang. An improved ARMA(1, 1) type fuzzy time series applied in predicting disordering. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 355-366. doi: 10.3934/naco.2020007
References:
[1]

I. AbdullahD. Daw and K. Seman, Traffic forecasting and planning of wimax under multiple priority applying fuzzy time series analysis, J. Appl. Math. Phys., 3 (2015), 68-74.   Google Scholar

[2]

G. Box and G. Jenkins, Time series analysis: forecasting and control, Journal of the Operational Research Society, 37 (1976), 238-242.   Google Scholar

[3]

M. Chen and B. Chen, A hybrid fuzzy time series model based on granular computing for stock price forecasting, Information Sciences, 294 (2015), 227-241.  doi: 10.1016/j.ins.2014.09.038.  Google Scholar

[4]

S. Chen, Forecasting enrollments based on fuzzy time series, Fuzzy Sets and Systems, 81 (1996), 311-319.  doi: 10.1016/S0165-0114(98)00266-8.  Google Scholar

[5]

S. Chen, Forecasting enrollments based on high-order fuzzy time series, Cybernetics and Systems: An International Journal, 33 (2002), 1-16.   Google Scholar

[6]

C. Cheng, T. Chen and C. Chiang, Trend-weighted fuzzy time-series model for taiex forecasting, in Int. Conf. Neural. Hong Kong: Inf. Process, 2006. Google Scholar

[7]

H. Y. GuoP. Witold and X. D. Liu, Fuzzy time series forecasting based on axiomatic fuzzy set theory, Neural Comput. Appl., 26 (2018), 2807-2817.   Google Scholar

[8]

J. R. HwangS. M. Chen and C. H. Lee, Handling forecasting problems using fuzzy time series, Fuzzy Sets and Systems, 100 (1998), 217-228.  doi: 10.1016/S0165-0114(98)00266-8.  Google Scholar

[9]

T. JilaniS. Burney and C. Ardil, Fuzzy metric approach for fuzzy time series forecasting based on frequency density based partitioning, Int. J. Comput. Intell., 4 (2008), 112-117.   Google Scholar

[10]

C. Kocak, Arma(p, q) type high order fuzzy time series forecast method based on fuzzy logic relations, Applied Soft Computing, 58 (2017), 92-103.   Google Scholar

[11]

W. Lee and J. Hong, A hybrid dynamic and fuzzy time series model for mid-term power load forecasting, Int. J. Electr. Power Energy Syst., 64 (2015), 1057-1062.   Google Scholar

[12]

B. S. LianQ. L. Zhang and J. N. Li, Sliding mode control for non-linear networked control systems subject to packet disordering via prediction method, Int. Control Theory and Applications, 11 (2017), 3079-3088.  doi: 10.1049/iet-cta.2016.1591.  Google Scholar

[13]

W. Lu, X. Y. Chen, W. Pedrycz, X. D. Liu and J. H. Yang, Using interval information granules to improve forecasting in fuzzy time series, Int. J. Approx. Reason, 57. (2015), 1–18. Google Scholar

[14]

N. RahmanM. Lee and M. Latif, Artificial neural networks and fuzzy time series forecasting: an application to air quality, Quality and Quantity, 49 (2015), 2633-2647.   Google Scholar

[15]

P. SaxenaK. Sharma and S. Easo, Forecasting enrollments based on fuzzy time series with higher forecast accuracy rate, Int. J. Comput. Technol., 3 (2012), 95-961.  doi: 10.1002/for.1185.  Google Scholar

[16]

P. Singh, High-order fuzzy-neuro-entropy integration-based expert system for time series, Neural Computing and Applications, 28 (2016), 3851-3868.   Google Scholar

[17]

Q. Song and B. Chissom, Forecasting enrollments with fuzzy time series - part Ⅰ, Fuzzy Sets and Systems, 54 (1993), 1-9.  doi: 10.1016/0165-0114(93)90372-O.  Google Scholar

[18]

T. H. K. Yu, Weighted fuzzy time series models for TAIEX forecasting, Physica A: Statistical Mechanics and Its Applications, 349 (2005), 609-624.   Google Scholar

[19]

G. Yule, On a method of investigating periodicities in disturbed series with special reference to wolfer's sunspot numbers, Philosophical Transactions of the Royal Society of London, 226 (1927), 26-298.   Google Scholar

[20]

L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.   Google Scholar

show all references

References:
[1]

I. AbdullahD. Daw and K. Seman, Traffic forecasting and planning of wimax under multiple priority applying fuzzy time series analysis, J. Appl. Math. Phys., 3 (2015), 68-74.   Google Scholar

[2]

G. Box and G. Jenkins, Time series analysis: forecasting and control, Journal of the Operational Research Society, 37 (1976), 238-242.   Google Scholar

[3]

M. Chen and B. Chen, A hybrid fuzzy time series model based on granular computing for stock price forecasting, Information Sciences, 294 (2015), 227-241.  doi: 10.1016/j.ins.2014.09.038.  Google Scholar

[4]

S. Chen, Forecasting enrollments based on fuzzy time series, Fuzzy Sets and Systems, 81 (1996), 311-319.  doi: 10.1016/S0165-0114(98)00266-8.  Google Scholar

[5]

S. Chen, Forecasting enrollments based on high-order fuzzy time series, Cybernetics and Systems: An International Journal, 33 (2002), 1-16.   Google Scholar

[6]

C. Cheng, T. Chen and C. Chiang, Trend-weighted fuzzy time-series model for taiex forecasting, in Int. Conf. Neural. Hong Kong: Inf. Process, 2006. Google Scholar

[7]

H. Y. GuoP. Witold and X. D. Liu, Fuzzy time series forecasting based on axiomatic fuzzy set theory, Neural Comput. Appl., 26 (2018), 2807-2817.   Google Scholar

[8]

J. R. HwangS. M. Chen and C. H. Lee, Handling forecasting problems using fuzzy time series, Fuzzy Sets and Systems, 100 (1998), 217-228.  doi: 10.1016/S0165-0114(98)00266-8.  Google Scholar

[9]

T. JilaniS. Burney and C. Ardil, Fuzzy metric approach for fuzzy time series forecasting based on frequency density based partitioning, Int. J. Comput. Intell., 4 (2008), 112-117.   Google Scholar

[10]

C. Kocak, Arma(p, q) type high order fuzzy time series forecast method based on fuzzy logic relations, Applied Soft Computing, 58 (2017), 92-103.   Google Scholar

[11]

W. Lee and J. Hong, A hybrid dynamic and fuzzy time series model for mid-term power load forecasting, Int. J. Electr. Power Energy Syst., 64 (2015), 1057-1062.   Google Scholar

[12]

B. S. LianQ. L. Zhang and J. N. Li, Sliding mode control for non-linear networked control systems subject to packet disordering via prediction method, Int. Control Theory and Applications, 11 (2017), 3079-3088.  doi: 10.1049/iet-cta.2016.1591.  Google Scholar

[13]

W. Lu, X. Y. Chen, W. Pedrycz, X. D. Liu and J. H. Yang, Using interval information granules to improve forecasting in fuzzy time series, Int. J. Approx. Reason, 57. (2015), 1–18. Google Scholar

[14]

N. RahmanM. Lee and M. Latif, Artificial neural networks and fuzzy time series forecasting: an application to air quality, Quality and Quantity, 49 (2015), 2633-2647.   Google Scholar

[15]

P. SaxenaK. Sharma and S. Easo, Forecasting enrollments based on fuzzy time series with higher forecast accuracy rate, Int. J. Comput. Technol., 3 (2012), 95-961.  doi: 10.1002/for.1185.  Google Scholar

[16]

P. Singh, High-order fuzzy-neuro-entropy integration-based expert system for time series, Neural Computing and Applications, 28 (2016), 3851-3868.   Google Scholar

[17]

Q. Song and B. Chissom, Forecasting enrollments with fuzzy time series - part Ⅰ, Fuzzy Sets and Systems, 54 (1993), 1-9.  doi: 10.1016/0165-0114(93)90372-O.  Google Scholar

[18]

T. H. K. Yu, Weighted fuzzy time series models for TAIEX forecasting, Physica A: Statistical Mechanics and Its Applications, 349 (2005), 609-624.   Google Scholar

[19]

G. Yule, On a method of investigating periodicities in disturbed series with special reference to wolfer's sunspot numbers, Philosophical Transactions of the Royal Society of London, 226 (1927), 26-298.   Google Scholar

[20]

L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.   Google Scholar

Figure 1.  A comparison between the proposed model and other models
Figure 2.  A comparison between the proposed model and other models
Figure 3.  A comparison between the delays of the proposed model and the real delays
Table 1.  Example of weights.
Time FLR Weight
$ \; t=1 $ $ A_i \rightarrow A_j $ 1
$ \; t=2 $ $ A_i \rightarrow A_k $ 1
$ \; t=3 $ $ A_i \rightarrow A_j $ 1
$ \; t=4 $ $ A_i \rightarrow A_l $ 1
$ \; t=5 $ $ A_i \rightarrow A_j $ 1
Time FLR Weight
$ \; t=1 $ $ A_i \rightarrow A_j $ 1
$ \; t=2 $ $ A_i \rightarrow A_k $ 1
$ \; t=3 $ $ A_i \rightarrow A_j $ 1
$ \; t=4 $ $ A_i \rightarrow A_l $ 1
$ \; t=5 $ $ A_i \rightarrow A_j $ 1
Table 2.  The predication values.
Year Actual price The rate of change PRC Predicted
$ t $ (in rupee) $ r(t)\% $ values
6/5/2012 2080.25
6/6/2012 2159.45 3.81 3.81
6/7/2012 2167.85 0.39 0.38 2167.66
6/8/2012 2180.05 0.56 0.61 2181.07
6/11/2012 2164.55 -0.71 -0.65 2165.88
6/12/2012 2206.90 1.96 1.91 2205.89
6/13/2012 2222.25 0.70 0.68 2221.91
6/14/2012 2154.25 -3.06 -3.12 2152.92
6/15/2012 2182.80 1.33 0.99 2175.58
6/18/2012 2087.65 -4.36 -4.36 2087.63
7/17/2012 2198.85 0.20 0.16 2197.96
7/18/2012 2185.95 -0.57 -0.65 2184.56
7/19/2012 2157.75 -1.29 -1.29 2157.75
7/20/2012 2134.55 -1.08 -1.03 2135.53
7/23/2012 2092.55 -1.97 -1.96 2092.71
7/24/2012 2094.80 0.11 0.09 2094.43
7/25/2012 2070.65 -1.15 -1.03 2073.22
7/26/2012 2017.15 -2.58 -2.40 2020.95
7/27/2012 1941.20 -3.77 -3.74 1941.71
7/31/2012 2005.20 3.30 3.36 2006.42
Year Actual price The rate of change PRC Predicted
$ t $ (in rupee) $ r(t)\% $ values
6/5/2012 2080.25
6/6/2012 2159.45 3.81 3.81
6/7/2012 2167.85 0.39 0.38 2167.66
6/8/2012 2180.05 0.56 0.61 2181.07
6/11/2012 2164.55 -0.71 -0.65 2165.88
6/12/2012 2206.90 1.96 1.91 2205.89
6/13/2012 2222.25 0.70 0.68 2221.91
6/14/2012 2154.25 -3.06 -3.12 2152.92
6/15/2012 2182.80 1.33 0.99 2175.58
6/18/2012 2087.65 -4.36 -4.36 2087.63
7/17/2012 2198.85 0.20 0.16 2197.96
7/18/2012 2185.95 -0.57 -0.65 2184.56
7/19/2012 2157.75 -1.29 -1.29 2157.75
7/20/2012 2134.55 -1.08 -1.03 2135.53
7/23/2012 2092.55 -1.97 -1.96 2092.71
7/24/2012 2094.80 0.11 0.09 2094.43
7/25/2012 2070.65 -1.15 -1.03 2073.22
7/26/2012 2017.15 -2.58 -2.40 2020.95
7/27/2012 1941.20 -3.77 -3.74 1941.71
7/31/2012 2005.20 3.30 3.36 2006.42
Table 3.  MSE of different methods.
Errors [4] [18] [16] Proposed model
RMSE 54.1958 82.3197 32.2586 1.6498
Errors [4] [18] [16] Proposed model
RMSE 54.1958 82.3197 32.2586 1.6498
[1]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[2]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061

[3]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[4]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[5]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[6]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[7]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[8]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[9]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[10]

Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020055

[11]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[12]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[13]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[14]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[15]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[16]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[17]

Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020128

[18]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[19]

Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial & Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123

[20]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

 Impact Factor: 

Metrics

  • PDF downloads (106)
  • HTML views (371)
  • Cited by (0)

Other articles
by authors

[Back to Top]