September  2020, 10(3): 355-366. doi: 10.3934/naco.2020007

An improved ARMA(1, 1) type fuzzy time series applied in predicting disordering

1. 

Department of Basic, Shenyang University of Technology, Liaoyang, 111000, China, Department of Mathematics, Northeastern University, Shenyang, 110004, China

2. 

Department of Mathematics, Northeastern University, Shenyang, 110004, China

* Corresponding author: Tie Zhang

Received  May 2019 Revised  October 2019 Published  February 2020

Fund Project: This work is supported by the State Key Laboratory of Synthetical Automation for Process Industries Fundamental Research Funds, No. 2013ZCX02

Fuzzy time series shows great advantages in dealing with incomplete or unreasonable data. But most of them are based on fuzzy AR time series model, so it is necessary to add MA variables to the fuzzy time series [10] to make it more accurate. An improved ARMA(1, 1) type fuzzy time series based on fuzzy logic group relations including fuzzy MA variables along with fuzzy AR variables was proposed in this paper. To take full account of the errors, the prediction errors were added to the forecast fuzzy sets, and it made the first-order fuzzy logical relationship sets more exact. In order to verify the advantage of the proposed method, it was applied to predict the stock prices of State Bank of India (SBI) and the packet disordering from a common source host in the Northeast University to www. yahoo. com. The experimental results showed that the proposed model was more precise than other models.

Citation: Zhi Liu, Tie Zhang. An improved ARMA(1, 1) type fuzzy time series applied in predicting disordering. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 355-366. doi: 10.3934/naco.2020007
References:
[1]

I. AbdullahD. Daw and K. Seman, Traffic forecasting and planning of wimax under multiple priority applying fuzzy time series analysis, J. Appl. Math. Phys., 3 (2015), 68-74.   Google Scholar

[2]

G. Box and G. Jenkins, Time series analysis: forecasting and control, Journal of the Operational Research Society, 37 (1976), 238-242.   Google Scholar

[3]

M. Chen and B. Chen, A hybrid fuzzy time series model based on granular computing for stock price forecasting, Information Sciences, 294 (2015), 227-241.  doi: 10.1016/j.ins.2014.09.038.  Google Scholar

[4]

S. Chen, Forecasting enrollments based on fuzzy time series, Fuzzy Sets and Systems, 81 (1996), 311-319.  doi: 10.1016/S0165-0114(98)00266-8.  Google Scholar

[5]

S. Chen, Forecasting enrollments based on high-order fuzzy time series, Cybernetics and Systems: An International Journal, 33 (2002), 1-16.   Google Scholar

[6]

C. Cheng, T. Chen and C. Chiang, Trend-weighted fuzzy time-series model for taiex forecasting, in Int. Conf. Neural. Hong Kong: Inf. Process, 2006. Google Scholar

[7]

H. Y. GuoP. Witold and X. D. Liu, Fuzzy time series forecasting based on axiomatic fuzzy set theory, Neural Comput. Appl., 26 (2018), 2807-2817.   Google Scholar

[8]

J. R. HwangS. M. Chen and C. H. Lee, Handling forecasting problems using fuzzy time series, Fuzzy Sets and Systems, 100 (1998), 217-228.  doi: 10.1016/S0165-0114(98)00266-8.  Google Scholar

[9]

T. JilaniS. Burney and C. Ardil, Fuzzy metric approach for fuzzy time series forecasting based on frequency density based partitioning, Int. J. Comput. Intell., 4 (2008), 112-117.   Google Scholar

[10]

C. Kocak, Arma(p, q) type high order fuzzy time series forecast method based on fuzzy logic relations, Applied Soft Computing, 58 (2017), 92-103.   Google Scholar

[11]

W. Lee and J. Hong, A hybrid dynamic and fuzzy time series model for mid-term power load forecasting, Int. J. Electr. Power Energy Syst., 64 (2015), 1057-1062.   Google Scholar

[12]

B. S. LianQ. L. Zhang and J. N. Li, Sliding mode control for non-linear networked control systems subject to packet disordering via prediction method, Int. Control Theory and Applications, 11 (2017), 3079-3088.  doi: 10.1049/iet-cta.2016.1591.  Google Scholar

[13]

W. Lu, X. Y. Chen, W. Pedrycz, X. D. Liu and J. H. Yang, Using interval information granules to improve forecasting in fuzzy time series, Int. J. Approx. Reason, 57. (2015), 1–18. Google Scholar

[14]

N. RahmanM. Lee and M. Latif, Artificial neural networks and fuzzy time series forecasting: an application to air quality, Quality and Quantity, 49 (2015), 2633-2647.   Google Scholar

[15]

P. SaxenaK. Sharma and S. Easo, Forecasting enrollments based on fuzzy time series with higher forecast accuracy rate, Int. J. Comput. Technol., 3 (2012), 95-961.  doi: 10.1002/for.1185.  Google Scholar

[16]

P. Singh, High-order fuzzy-neuro-entropy integration-based expert system for time series, Neural Computing and Applications, 28 (2016), 3851-3868.   Google Scholar

[17]

Q. Song and B. Chissom, Forecasting enrollments with fuzzy time series - part Ⅰ, Fuzzy Sets and Systems, 54 (1993), 1-9.  doi: 10.1016/0165-0114(93)90372-O.  Google Scholar

[18]

T. H. K. Yu, Weighted fuzzy time series models for TAIEX forecasting, Physica A: Statistical Mechanics and Its Applications, 349 (2005), 609-624.   Google Scholar

[19]

G. Yule, On a method of investigating periodicities in disturbed series with special reference to wolfer's sunspot numbers, Philosophical Transactions of the Royal Society of London, 226 (1927), 26-298.   Google Scholar

[20]

L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.   Google Scholar

show all references

References:
[1]

I. AbdullahD. Daw and K. Seman, Traffic forecasting and planning of wimax under multiple priority applying fuzzy time series analysis, J. Appl. Math. Phys., 3 (2015), 68-74.   Google Scholar

[2]

G. Box and G. Jenkins, Time series analysis: forecasting and control, Journal of the Operational Research Society, 37 (1976), 238-242.   Google Scholar

[3]

M. Chen and B. Chen, A hybrid fuzzy time series model based on granular computing for stock price forecasting, Information Sciences, 294 (2015), 227-241.  doi: 10.1016/j.ins.2014.09.038.  Google Scholar

[4]

S. Chen, Forecasting enrollments based on fuzzy time series, Fuzzy Sets and Systems, 81 (1996), 311-319.  doi: 10.1016/S0165-0114(98)00266-8.  Google Scholar

[5]

S. Chen, Forecasting enrollments based on high-order fuzzy time series, Cybernetics and Systems: An International Journal, 33 (2002), 1-16.   Google Scholar

[6]

C. Cheng, T. Chen and C. Chiang, Trend-weighted fuzzy time-series model for taiex forecasting, in Int. Conf. Neural. Hong Kong: Inf. Process, 2006. Google Scholar

[7]

H. Y. GuoP. Witold and X. D. Liu, Fuzzy time series forecasting based on axiomatic fuzzy set theory, Neural Comput. Appl., 26 (2018), 2807-2817.   Google Scholar

[8]

J. R. HwangS. M. Chen and C. H. Lee, Handling forecasting problems using fuzzy time series, Fuzzy Sets and Systems, 100 (1998), 217-228.  doi: 10.1016/S0165-0114(98)00266-8.  Google Scholar

[9]

T. JilaniS. Burney and C. Ardil, Fuzzy metric approach for fuzzy time series forecasting based on frequency density based partitioning, Int. J. Comput. Intell., 4 (2008), 112-117.   Google Scholar

[10]

C. Kocak, Arma(p, q) type high order fuzzy time series forecast method based on fuzzy logic relations, Applied Soft Computing, 58 (2017), 92-103.   Google Scholar

[11]

W. Lee and J. Hong, A hybrid dynamic and fuzzy time series model for mid-term power load forecasting, Int. J. Electr. Power Energy Syst., 64 (2015), 1057-1062.   Google Scholar

[12]

B. S. LianQ. L. Zhang and J. N. Li, Sliding mode control for non-linear networked control systems subject to packet disordering via prediction method, Int. Control Theory and Applications, 11 (2017), 3079-3088.  doi: 10.1049/iet-cta.2016.1591.  Google Scholar

[13]

W. Lu, X. Y. Chen, W. Pedrycz, X. D. Liu and J. H. Yang, Using interval information granules to improve forecasting in fuzzy time series, Int. J. Approx. Reason, 57. (2015), 1–18. Google Scholar

[14]

N. RahmanM. Lee and M. Latif, Artificial neural networks and fuzzy time series forecasting: an application to air quality, Quality and Quantity, 49 (2015), 2633-2647.   Google Scholar

[15]

P. SaxenaK. Sharma and S. Easo, Forecasting enrollments based on fuzzy time series with higher forecast accuracy rate, Int. J. Comput. Technol., 3 (2012), 95-961.  doi: 10.1002/for.1185.  Google Scholar

[16]

P. Singh, High-order fuzzy-neuro-entropy integration-based expert system for time series, Neural Computing and Applications, 28 (2016), 3851-3868.   Google Scholar

[17]

Q. Song and B. Chissom, Forecasting enrollments with fuzzy time series - part Ⅰ, Fuzzy Sets and Systems, 54 (1993), 1-9.  doi: 10.1016/0165-0114(93)90372-O.  Google Scholar

[18]

T. H. K. Yu, Weighted fuzzy time series models for TAIEX forecasting, Physica A: Statistical Mechanics and Its Applications, 349 (2005), 609-624.   Google Scholar

[19]

G. Yule, On a method of investigating periodicities in disturbed series with special reference to wolfer's sunspot numbers, Philosophical Transactions of the Royal Society of London, 226 (1927), 26-298.   Google Scholar

[20]

L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.   Google Scholar

Figure 1.  A comparison between the proposed model and other models
Figure 2.  A comparison between the proposed model and other models
Figure 3.  A comparison between the delays of the proposed model and the real delays
Table 1.  Example of weights.
Time FLR Weight
$ \; t=1 $ $ A_i \rightarrow A_j $ 1
$ \; t=2 $ $ A_i \rightarrow A_k $ 1
$ \; t=3 $ $ A_i \rightarrow A_j $ 1
$ \; t=4 $ $ A_i \rightarrow A_l $ 1
$ \; t=5 $ $ A_i \rightarrow A_j $ 1
Time FLR Weight
$ \; t=1 $ $ A_i \rightarrow A_j $ 1
$ \; t=2 $ $ A_i \rightarrow A_k $ 1
$ \; t=3 $ $ A_i \rightarrow A_j $ 1
$ \; t=4 $ $ A_i \rightarrow A_l $ 1
$ \; t=5 $ $ A_i \rightarrow A_j $ 1
Table 2.  The predication values.
Year Actual price The rate of change PRC Predicted
$ t $ (in rupee) $ r(t)\% $ values
6/5/2012 2080.25
6/6/2012 2159.45 3.81 3.81
6/7/2012 2167.85 0.39 0.38 2167.66
6/8/2012 2180.05 0.56 0.61 2181.07
6/11/2012 2164.55 -0.71 -0.65 2165.88
6/12/2012 2206.90 1.96 1.91 2205.89
6/13/2012 2222.25 0.70 0.68 2221.91
6/14/2012 2154.25 -3.06 -3.12 2152.92
6/15/2012 2182.80 1.33 0.99 2175.58
6/18/2012 2087.65 -4.36 -4.36 2087.63
7/17/2012 2198.85 0.20 0.16 2197.96
7/18/2012 2185.95 -0.57 -0.65 2184.56
7/19/2012 2157.75 -1.29 -1.29 2157.75
7/20/2012 2134.55 -1.08 -1.03 2135.53
7/23/2012 2092.55 -1.97 -1.96 2092.71
7/24/2012 2094.80 0.11 0.09 2094.43
7/25/2012 2070.65 -1.15 -1.03 2073.22
7/26/2012 2017.15 -2.58 -2.40 2020.95
7/27/2012 1941.20 -3.77 -3.74 1941.71
7/31/2012 2005.20 3.30 3.36 2006.42
Year Actual price The rate of change PRC Predicted
$ t $ (in rupee) $ r(t)\% $ values
6/5/2012 2080.25
6/6/2012 2159.45 3.81 3.81
6/7/2012 2167.85 0.39 0.38 2167.66
6/8/2012 2180.05 0.56 0.61 2181.07
6/11/2012 2164.55 -0.71 -0.65 2165.88
6/12/2012 2206.90 1.96 1.91 2205.89
6/13/2012 2222.25 0.70 0.68 2221.91
6/14/2012 2154.25 -3.06 -3.12 2152.92
6/15/2012 2182.80 1.33 0.99 2175.58
6/18/2012 2087.65 -4.36 -4.36 2087.63
7/17/2012 2198.85 0.20 0.16 2197.96
7/18/2012 2185.95 -0.57 -0.65 2184.56
7/19/2012 2157.75 -1.29 -1.29 2157.75
7/20/2012 2134.55 -1.08 -1.03 2135.53
7/23/2012 2092.55 -1.97 -1.96 2092.71
7/24/2012 2094.80 0.11 0.09 2094.43
7/25/2012 2070.65 -1.15 -1.03 2073.22
7/26/2012 2017.15 -2.58 -2.40 2020.95
7/27/2012 1941.20 -3.77 -3.74 1941.71
7/31/2012 2005.20 3.30 3.36 2006.42
Table 3.  MSE of different methods.
Errors [4] [18] [16] Proposed model
RMSE 54.1958 82.3197 32.2586 1.6498
Errors [4] [18] [16] Proposed model
RMSE 54.1958 82.3197 32.2586 1.6498
[1]

Chuang Peng. Minimum degrees of polynomial models on time series. Conference Publications, 2005, 2005 (Special) : 720-729. doi: 10.3934/proc.2005.2005.720

[2]

Ruiqi Li, Yifan Chen, Xiang Zhao, Yanli Hu, Weidong Xiao. Time series based urban air quality predication. Big Data & Information Analytics, 2016, 1 (2&3) : 171-183. doi: 10.3934/bdia.2016003

[3]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial & Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

[4]

Ahmad Deeb, A. Hamdouni, Dina Razafindralandy. Comparison between Borel-Padé summation and factorial series, as time integration methods. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 393-408. doi: 10.3934/dcdss.2016003

[5]

Hassan Khodaiemehr, Dariush Kiani. High-rate space-time block codes from twisted Laurent series rings. Advances in Mathematics of Communications, 2015, 9 (3) : 255-275. doi: 10.3934/amc.2015.9.255

[6]

Annalisa Pascarella, Alberto Sorrentino, Cristina Campi, Michele Piana. Particle filtering, beamforming and multiple signal classification for the analysis of magnetoencephalography time series: a comparison of algorithms. Inverse Problems & Imaging, 2010, 4 (1) : 169-190. doi: 10.3934/ipi.2010.4.169

[7]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019107

[8]

Hongbiao Fan, Jun-E Feng, Min Meng. Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1535-1556. doi: 10.3934/jimo.2016.12.1535

[9]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061

[10]

Armengol Gasull, Francesc Mañosas. Subseries and signed series. Communications on Pure & Applied Analysis, 2019, 18 (1) : 479-492. doi: 10.3934/cpaa.2019024

[11]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[12]

Bernard Ducomet. Asymptotics for 1D flows with time-dependent external fields. Conference Publications, 2007, 2007 (Special) : 323-333. doi: 10.3934/proc.2007.2007.323

[13]

Yuusuke Sugiyama. Degeneracy in finite time of 1D quasilinear wave equations Ⅱ. Evolution Equations & Control Theory, 2017, 6 (4) : 615-628. doi: 10.3934/eect.2017031

[14]

Xiaodong Liu, Wanquan Liu. The framework of axiomatics fuzzy sets based fuzzy classifiers. Journal of Industrial & Management Optimization, 2008, 4 (3) : 581-609. doi: 10.3934/jimo.2008.4.581

[15]

Jiaquan Zhan, Fanyong Meng. Cores and optimal fuzzy communication structures of fuzzy games. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1187-1198. doi: 10.3934/dcdss.2019082

[16]

Juan J. Nieto, M. Victoria Otero-Espinar, Rosana Rodríguez-López. Dynamics of the fuzzy logistic family. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 699-717. doi: 10.3934/dcdsb.2010.14.699

[17]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[18]

Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619

[19]

Ying Wu, Zhaohui Yuan, Yanpeng Wu. Optimal tracking control for networked control systems with random time delays and packet dropouts. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1343-1354. doi: 10.3934/jimo.2015.11.1343

[20]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 763-800. doi: 10.3934/dcds.2008.21.763

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]