September  2020, 10(3): 367-379. doi: 10.3934/naco.2020008

Fault estimation and optimization for uncertain disturbed singularly perturbed systems with time-delay

Beijing Key Laboratory of Fieldbus Technology and Automation, North China University of Technology, Beijing 100144, China

* Corresponding author: Lei Liu, liulei_sophia@163.com

Received  May 2019 Revised  September 2019 Published  February 2020

Fund Project: The first author is supported by Youth Foundation of Beijing Nature Science Grant (No.4154068), the Youth Talent Cultivation Program of Beijing, the National Natural Science Foundation of China (No.61473002, No.61573024), North China University of Technology Yuyou Talent Support Program and the Fundamental Research Funds for Beijing Universities (No.110052971921/030)

This paper presents a observer-based fault estimation method for a class of singularly perturbed systems subjected to parameter uncertainties and time-delay in state and disturbance signal with finite energy. To solve the estimation problem involving actuator fault and sensor fault for the uncertain disturbed singularly perturbed systems with time-delay, the problem we studied is firstly transformed into a standard $ H_\infty $ control problem, in which the performance index $ \gamma $ represents the attenuation of finite energy disturbance. By adopting Lyapunov function with the $ \varepsilon $-dependence, a sufficient condition can be derived which enables the designed observer to estimate different kinds of fault signals stably and accurately, and the result obtained by dealing with small perturbation parameter in this way is less conservative. A novel multi-objective optimization scheme is then proposed to optimal disturbance attenuation index $ \gamma $ and system stable upper bound $ \varepsilon^* $, in this case, the designed observer can estimate the fault signals better in the presence of interference when the systems guarantee maximum stability bound. In the end, the validity and correctness of proposed scheme is verified by comparing the error between the estimated faults and the actual faults.

Citation: Lei Liu, Shaoying Lu, Cunwu Han, Chao Li, Zejin Feng. Fault estimation and optimization for uncertain disturbed singularly perturbed systems with time-delay. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 367-379. doi: 10.3934/naco.2020008
References:
[1]

Z. Bougatef, N. Abdelkrim, A. Tellili, et al., Fault diagnosis and accommodation for singularly perturbed time-delayed systems: descriptor approach, in 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, (2017), 86–92. Google Scholar

[2]

G. R. Duan, H. H. Yu, A. G. Wu, et al., Analysis and Design of Descriptor Linear Systems, 1st edition, Beijing: Science Press, 2012. doi: 10.1007/978-1-4419-6397-0.  Google Scholar

[3]

S. H. Jiang, Stability analysis of time-varying time-delay uncertain singular systems, Journal of Tonghua Normal University, 38 (2017), 30-32.   Google Scholar

[4]

H. Y. Li, Y. Y. Wang, D. Y. Yao, et al., A sliding mode approach to stabilization of nonlinear Markovian jump singularly perturbed systems, Automatica, 97 (2018), 404-413. doi: 10.1016/j.automatica.2018.03.066.  Google Scholar

[5]

D. LiuY. Yang and Y. Zhang, Robust fault estimation for singularly perturbed systems with Lipschitz nonlinearity, Journal of The Franklin Institute, 353 (2016), 876-890.  doi: 10.1016/j.jfranklin.2016.01.009.  Google Scholar

[6]

H. S. Liu and Y. Huang, Robust adaptive output feedback tracking control for flexible-joint robot manipulators based on singularly perturbed decoupling, Robotica, 36 (2018), 822-838.   Google Scholar

[7]

L. LiuY. Yang and W. Liu, Unified optimization of $H_\infty$ index and upper stability bound for singularly perturbed systems, Optimization Letters, 8 (2014), 1889-1904.  doi: 10.1007/s11590-013-0686-6.  Google Scholar

[8]

L. Liu, S. Y. Lu, C. W. Han, et al., Robust $H_\infty$ control for uncertain singularly perturbed systems with time-delay, in China Control Conference, (2017), 3147–3152. Google Scholar

[9]

L. Liu , X. F. Yan, C. W. Han, et al., Fault diagnosis and optimal fault-tolerant control of singularly perturbed systems based on PI observer, Control and Decision, 31 (2016), 1867-1872. Google Scholar

[10]

W. Q. Liu, M. Paskota, V. Sreeram, et al., Improvement on stability bounds for singularly perturbed systems via state feedback, International Journal of Systems Science, 28 (1997), 571-578. Google Scholar

[11]

P. Mei and Y. Zou, Study on robust stability of uncertain singular perturbation systems with time delay, Control and Decision, 23 (2008), 392-396.   Google Scholar

[12]

M. NdiayeW. Liu and Z. M. Wang, Robust ISS stabilization on disturbance for uncertain singularly perturbed systems, IMA Journal of Mathematical Control and Information, 35 (2018), 1115-1127.  doi: 10.1093/imamci/dnx017.  Google Scholar

[13]

H. Shen, F. Li, Z. Wu, J. H. Park, et al., Fuzzy-model-based nonfragile control for nonlinear singularly perturbed systems with semi-Markov jump parameters, IEEE Transactions on Fuzzy Systems, 26 (2018), 3428-3439. Google Scholar

[14]

H. Shen, Y. Men, Z. G. Wu, et al., Nonfragile $H_\infty$ control for fuzzy markovian jump systems under fast sampling singular perturbation, IEEE Transactions on Systems, Man and Cybernetics: Systems, (2017), 1–12. Google Scholar

[15]

H. Shen, Y. Men, Z. Wu, J. Cao, et al., Network-based quantized control for fuzzy singularly perturbed semi-Markov jump systems and its application, IEEE Transactions on Circuits and Systems I: Regular Papers, 66 (2019), 1130-1140.  Google Scholar

[16]

F. Q. Sun, Guaranteed performance control of a time-varying time-delay uncertain singular perturbation system, Journal of Jilin University, 6 (2015), 637-643.   Google Scholar

[17]

A. Tellili, M. N. Abdelkrim and M. Benrejeb, Model-based fault diagnosis of two-time scales singularly perturbed systems, in International Symposium on Control, (2004), 819–822. Google Scholar

[18]

A. Tellili and M. N. Abdelkrim, Fault diagnosis and reconfigurable control of singularly perturbed systems using GIMC structure, International Journal of Computer Applications, 44 (2012), 31-35.   Google Scholar

[19]

A. Tellili and M. N. Abdelkrim, Realiable $H_\infty$ controller design for singularly perturbed systems with sensor failure, in IEEE International Conference on Industrial Technology, (2004), 1636–1641. Google Scholar

[20]

A. TelliliM. N. Abdelkrim and M. Benrejeb, Reliable $H_\infty$ control of multiple time scales singularly perturbed systems with sensor failure, International Journal of Control, 80 (2007), 659-665.  doi: 10.1080/00207170601009634.  Google Scholar

[21]

G. X. Wang, J. Wu, B. F. Zeng, et. al., A nonlinear adaptive sliding mode control strategy for modular high-temperature gas-cooled reactors, Progress in Nuclear Energy, 113 (2019), 53-61. Google Scholar

[22]

Y. Y. WangW. Liu and Z. M. Wang, Robust $H_\infty$ control of uncertain singular perturbation system with time delay, Journal of Beijing University of Technology, 42 (2016), 217-222.   Google Scholar

[23]

J. Xu, C. Cai and Y. Zou, A novel method for fault detection in singularly perturbed systems via the finite frequency strategy, Journal of The Franklin Institute, 352 (2015), 5061-5084. doi: 10.1016/j.jfranklin.2015.08.001.  Google Scholar

[24]

J. Xu and Y. G. Niu, A finite frequency approach for fault detection of fuzzy singularly perturbed systems with regional pole assignment, Neurocomputing, 325 (2019), 200-201.   Google Scholar

[25]

J. XuY. G. NiuE. Fridman and et. al, Finite frequency $H_\infty$ control of singularly perturbed Euler-Lagrange systems: An artificial delay approach, Inernational Journal of Robust and Nonlinear Control, 29 (2019), 353-374.  doi: 10.1002/rnc.4383.  Google Scholar

[26] K. K. Xu, Singular Perturbation in the Control Systems, Beijing: Science Press, 1986.   Google Scholar
[27]

C. Yang, L. Ma, X. Ma, et al., Stability analysis of singularly perturbed control systems with actuator saturation, Journal of The Franklin Institute, 353 (2016), 1284-1296. doi: 10.1016/j.jfranklin.2015.12.013.  Google Scholar

[28]

C. Yang, Z. Che, J. Fu, et al., Passivity-based integral sliding mode control and " - bound estimation for uncertain singularly perturbed systems with disturbances, IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (2019), 452-456. doi: 10.1155/2015/926762.  Google Scholar

[29]

C. YangZ. Che and L. Zhou, Integral sliding mode control for singularly perturbed systems with mismatched disturbances, Circuits, Systems, and Signal Processing, 38 (2019), 1561-1582.  doi: 10.1007/s00034-018-0925-2.  Google Scholar

[30]

C. Yang and Q. Zhang, Multiobjective control for T-S fuzzy singularly perturbed systems, IEEE Transactions Fuzzy Systems, 17 (2009), 104-115.   Google Scholar

[31]

D. M. Yang, Q. L. Zhang, B. Yao, et al., Singular Systems, 1st edition, Beijing: Science Press, 2004. Google Scholar

[32]

M. R. Zhou, W. Z. Lin, M. K. Ni, et al., Introduction to Singular Perturbation, Beijing: Science Press, 2014.  Google Scholar

show all references

References:
[1]

Z. Bougatef, N. Abdelkrim, A. Tellili, et al., Fault diagnosis and accommodation for singularly perturbed time-delayed systems: descriptor approach, in 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, (2017), 86–92. Google Scholar

[2]

G. R. Duan, H. H. Yu, A. G. Wu, et al., Analysis and Design of Descriptor Linear Systems, 1st edition, Beijing: Science Press, 2012. doi: 10.1007/978-1-4419-6397-0.  Google Scholar

[3]

S. H. Jiang, Stability analysis of time-varying time-delay uncertain singular systems, Journal of Tonghua Normal University, 38 (2017), 30-32.   Google Scholar

[4]

H. Y. Li, Y. Y. Wang, D. Y. Yao, et al., A sliding mode approach to stabilization of nonlinear Markovian jump singularly perturbed systems, Automatica, 97 (2018), 404-413. doi: 10.1016/j.automatica.2018.03.066.  Google Scholar

[5]

D. LiuY. Yang and Y. Zhang, Robust fault estimation for singularly perturbed systems with Lipschitz nonlinearity, Journal of The Franklin Institute, 353 (2016), 876-890.  doi: 10.1016/j.jfranklin.2016.01.009.  Google Scholar

[6]

H. S. Liu and Y. Huang, Robust adaptive output feedback tracking control for flexible-joint robot manipulators based on singularly perturbed decoupling, Robotica, 36 (2018), 822-838.   Google Scholar

[7]

L. LiuY. Yang and W. Liu, Unified optimization of $H_\infty$ index and upper stability bound for singularly perturbed systems, Optimization Letters, 8 (2014), 1889-1904.  doi: 10.1007/s11590-013-0686-6.  Google Scholar

[8]

L. Liu, S. Y. Lu, C. W. Han, et al., Robust $H_\infty$ control for uncertain singularly perturbed systems with time-delay, in China Control Conference, (2017), 3147–3152. Google Scholar

[9]

L. Liu , X. F. Yan, C. W. Han, et al., Fault diagnosis and optimal fault-tolerant control of singularly perturbed systems based on PI observer, Control and Decision, 31 (2016), 1867-1872. Google Scholar

[10]

W. Q. Liu, M. Paskota, V. Sreeram, et al., Improvement on stability bounds for singularly perturbed systems via state feedback, International Journal of Systems Science, 28 (1997), 571-578. Google Scholar

[11]

P. Mei and Y. Zou, Study on robust stability of uncertain singular perturbation systems with time delay, Control and Decision, 23 (2008), 392-396.   Google Scholar

[12]

M. NdiayeW. Liu and Z. M. Wang, Robust ISS stabilization on disturbance for uncertain singularly perturbed systems, IMA Journal of Mathematical Control and Information, 35 (2018), 1115-1127.  doi: 10.1093/imamci/dnx017.  Google Scholar

[13]

H. Shen, F. Li, Z. Wu, J. H. Park, et al., Fuzzy-model-based nonfragile control for nonlinear singularly perturbed systems with semi-Markov jump parameters, IEEE Transactions on Fuzzy Systems, 26 (2018), 3428-3439. Google Scholar

[14]

H. Shen, Y. Men, Z. G. Wu, et al., Nonfragile $H_\infty$ control for fuzzy markovian jump systems under fast sampling singular perturbation, IEEE Transactions on Systems, Man and Cybernetics: Systems, (2017), 1–12. Google Scholar

[15]

H. Shen, Y. Men, Z. Wu, J. Cao, et al., Network-based quantized control for fuzzy singularly perturbed semi-Markov jump systems and its application, IEEE Transactions on Circuits and Systems I: Regular Papers, 66 (2019), 1130-1140.  Google Scholar

[16]

F. Q. Sun, Guaranteed performance control of a time-varying time-delay uncertain singular perturbation system, Journal of Jilin University, 6 (2015), 637-643.   Google Scholar

[17]

A. Tellili, M. N. Abdelkrim and M. Benrejeb, Model-based fault diagnosis of two-time scales singularly perturbed systems, in International Symposium on Control, (2004), 819–822. Google Scholar

[18]

A. Tellili and M. N. Abdelkrim, Fault diagnosis and reconfigurable control of singularly perturbed systems using GIMC structure, International Journal of Computer Applications, 44 (2012), 31-35.   Google Scholar

[19]

A. Tellili and M. N. Abdelkrim, Realiable $H_\infty$ controller design for singularly perturbed systems with sensor failure, in IEEE International Conference on Industrial Technology, (2004), 1636–1641. Google Scholar

[20]

A. TelliliM. N. Abdelkrim and M. Benrejeb, Reliable $H_\infty$ control of multiple time scales singularly perturbed systems with sensor failure, International Journal of Control, 80 (2007), 659-665.  doi: 10.1080/00207170601009634.  Google Scholar

[21]

G. X. Wang, J. Wu, B. F. Zeng, et. al., A nonlinear adaptive sliding mode control strategy for modular high-temperature gas-cooled reactors, Progress in Nuclear Energy, 113 (2019), 53-61. Google Scholar

[22]

Y. Y. WangW. Liu and Z. M. Wang, Robust $H_\infty$ control of uncertain singular perturbation system with time delay, Journal of Beijing University of Technology, 42 (2016), 217-222.   Google Scholar

[23]

J. Xu, C. Cai and Y. Zou, A novel method for fault detection in singularly perturbed systems via the finite frequency strategy, Journal of The Franklin Institute, 352 (2015), 5061-5084. doi: 10.1016/j.jfranklin.2015.08.001.  Google Scholar

[24]

J. Xu and Y. G. Niu, A finite frequency approach for fault detection of fuzzy singularly perturbed systems with regional pole assignment, Neurocomputing, 325 (2019), 200-201.   Google Scholar

[25]

J. XuY. G. NiuE. Fridman and et. al, Finite frequency $H_\infty$ control of singularly perturbed Euler-Lagrange systems: An artificial delay approach, Inernational Journal of Robust and Nonlinear Control, 29 (2019), 353-374.  doi: 10.1002/rnc.4383.  Google Scholar

[26] K. K. Xu, Singular Perturbation in the Control Systems, Beijing: Science Press, 1986.   Google Scholar
[27]

C. Yang, L. Ma, X. Ma, et al., Stability analysis of singularly perturbed control systems with actuator saturation, Journal of The Franklin Institute, 353 (2016), 1284-1296. doi: 10.1016/j.jfranklin.2015.12.013.  Google Scholar

[28]

C. Yang, Z. Che, J. Fu, et al., Passivity-based integral sliding mode control and " - bound estimation for uncertain singularly perturbed systems with disturbances, IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (2019), 452-456. doi: 10.1155/2015/926762.  Google Scholar

[29]

C. YangZ. Che and L. Zhou, Integral sliding mode control for singularly perturbed systems with mismatched disturbances, Circuits, Systems, and Signal Processing, 38 (2019), 1561-1582.  doi: 10.1007/s00034-018-0925-2.  Google Scholar

[30]

C. Yang and Q. Zhang, Multiobjective control for T-S fuzzy singularly perturbed systems, IEEE Transactions Fuzzy Systems, 17 (2009), 104-115.   Google Scholar

[31]

D. M. Yang, Q. L. Zhang, B. Yao, et al., Singular Systems, 1st edition, Beijing: Science Press, 2004. Google Scholar

[32]

M. R. Zhou, W. Z. Lin, M. K. Ni, et al., Introduction to Singular Perturbation, Beijing: Science Press, 2014.  Google Scholar

Figure 1.  Curves of estimated actuator fault
Figure 2.  Curves of estimated actuator fault
Figure 3.  Curves of the actuator fault estimation error
Figure 4.  Curves of the actuator fault estimation error
Figure 5.  Curves of estimated sensor fault
Figure 6.  Curves of estimated sensor fault
Figure 7.  Curves of the sensor fault estimation error
Figure 8.  Curves of the sensor fault estimation error
Figure 9.  Estimation error curves of fault state vector
Figure 10.  Estimation error curves of original system state vector
[1]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[2]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[3]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[4]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[7]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[8]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[9]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[10]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[13]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[14]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[15]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[16]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[17]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[18]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[19]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[20]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

 Impact Factor: 

Metrics

  • PDF downloads (92)
  • HTML views (395)
  • Cited by (0)

Other articles
by authors

[Back to Top]