• Previous Article
    Bifurcation analysis of a Singular Nutrient-plankton-fish model with taxation, protected zone and multiple delays
  • NACO Home
  • This Issue
  • Next Article
    Fault estimation and optimization for uncertain disturbed singularly perturbed systems with time-delay
September  2020, 10(3): 381-389. doi: 10.3934/naco.2020009

Passive control for a class of Nonlinear systems by using the technique of Adding a power integrator

1. 

School of Mathematics, Liaoning University, Shenyang, 110036, China

2. 

College of Science, Liaoning Shihua University, Fushun, 113001, China

* Corresponding author: Li Yang

Received  May 2019 Revised  October 2019 Published  February 2020

Fund Project: This work is supported by the scientific research fund LQN201712 of Liaoning Provincial Education Department

This paper studies the problem of passive control for a class of uncertain nonlinear lower-triangle systems. We extend the feedback designing tool named adding a power integrator. By using it repeatedly, the passive controller is given. Under this designing method, we don't need the system to be feedback linearizable. Moreover, comparing with the backstepping technique, the coordinate in the controller designing process of this method does not need to be transformed.

Citation: Jinglai Qiao, Li Yang, Jiawei Yao. Passive control for a class of Nonlinear systems by using the technique of Adding a power integrator. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 381-389. doi: 10.3934/naco.2020009
References:
[1]

W. Chen and M. Saif, Passivity and passivity based controller design of a class of switched control systems, in Proc. 16th IFAC World Congress, (2005), 143–147. Google Scholar

[2]

T. DengH. YaoJ. Du and J. Jiang, Neural network dynamic control for high-order nonlinear time-delay systems, Systems Engineering and Electronics, 36 (2014), 1152-1161.   Google Scholar

[3]

P. DoerfferO. Szulc and R. Bohing, Shock wave smearing by passive control, Journal of Thermal Science, 15 (2006), 43-47.   Google Scholar

[4]

A. T. EL-Sayed, Suppression of nonlinear vibration system described by nonlinear differential equations using passive controller, Nonlinear Dynamics, 78 (2014), 1683-1694.  doi: 10.1007/s11071-014-1550-7.  Google Scholar

[5]

U. K. Kocamaz and Y. Uyaroglu, Controlling Rucklidge chaotic system with a single controller using linear feedback and passive control methods, Nonlinear Dynamics, 75 (2014), 63-72.  doi: 10.1007/s11071-013-1049-7.  Google Scholar

[6]

Y. Li, Y. Fu and G. Duan, Robust passive control for T-S fuzzy systems, in ICIC: Computational Intelligence, (2006), 146–151. Google Scholar

[7]

L. Liu and L. Sun, Coordinated passivity controller design for SVC and generator excitation with state constraint, Control Engineering of China, 15 (2018), 63-72.   Google Scholar

[8]

Y. Liu and J. Zhao, Stabilization of switched nonlinear systems with passive and non-passive subsystems, Nonlinear Dynamics, 67 (2012), 1709-1716.  doi: 10.1007/s11071-011-0098-z.  Google Scholar

[9]

W. Lin and C. Qian, Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems, Systems & Control Letters, 39 (2000), 339-351.  doi: 10.1016/S0167-6911(99)00115-2.  Google Scholar

[10]

W. Lin and C. Qian, Adaptive regulation of high-order lower-triangular systems: an adding a power integrator technique, Systems & Control Letters, 39 (2000), 353-364.  doi: 10.1016/S0167-6911(99)00114-0.  Google Scholar

[11]

T. Reis and J. C. Willems, A balancing approach to the realization of systems with internal passivity and reciprocity, Systems and Control Letters, 60 (2011), 69-74.  doi: 10.1016/j.sysconle.2010.10.009.  Google Scholar

[12]

C. SunH. Sun and X. Diao, Continuous feedback control for a class of nonhomogeneous high-order nonlinear systems, Acta Automatica Sinca, 40 (2014), 149-155.   Google Scholar

[13]

J. Tian and X. Xie, Adaptive state-feedback stabilization for more general high-order stochastic nonlinear systems, Acta Autonatica Sinca, 34 (2008), 1188-1191.  doi: 10.3724/SP.J.1004.2008.01188.  Google Scholar

[14]

Z. WuG. SuP. Shi and J. Chu, Reliable control for SSs with time-varying delays, Lecture Notes in Control and Information Sciences, 443 (2013), 37-52.   Google Scholar

[15]

Z. Q. WuM. H. Song and L. Y. Fu, Passivity-based backstepping control for multimachine power system, Advanced Technology of Electrical Engineering and Energy, 32 (2013), 28-31.   Google Scholar

[16]

H. Xiao and L. Zhao, Robust passive control of uncertain switched time-delay systems: a sliding mode control design, Journal of Control Theory and Applications, 11 (2013), 96-102.  doi: 10.1007/s11768-013-1033-2.  Google Scholar

[17]

L. Yang, X. Liu et al., Exponentially dissipative control for singular impulsive dynamical systems, Journal of Dynamic systems, Measurement and Control, 139 (2017), 041008-1–041008-6. Google Scholar

[18]

L. YangX. Liu and Z. Zhang, Dissipative control for singular impulsive dynamical systems, Electronic Journal of Qualitative Theory of Differential Equations, 32 (2012), 1-11.  doi: 10.14232/ejqtde.2012.1.32.  Google Scholar

show all references

References:
[1]

W. Chen and M. Saif, Passivity and passivity based controller design of a class of switched control systems, in Proc. 16th IFAC World Congress, (2005), 143–147. Google Scholar

[2]

T. DengH. YaoJ. Du and J. Jiang, Neural network dynamic control for high-order nonlinear time-delay systems, Systems Engineering and Electronics, 36 (2014), 1152-1161.   Google Scholar

[3]

P. DoerfferO. Szulc and R. Bohing, Shock wave smearing by passive control, Journal of Thermal Science, 15 (2006), 43-47.   Google Scholar

[4]

A. T. EL-Sayed, Suppression of nonlinear vibration system described by nonlinear differential equations using passive controller, Nonlinear Dynamics, 78 (2014), 1683-1694.  doi: 10.1007/s11071-014-1550-7.  Google Scholar

[5]

U. K. Kocamaz and Y. Uyaroglu, Controlling Rucklidge chaotic system with a single controller using linear feedback and passive control methods, Nonlinear Dynamics, 75 (2014), 63-72.  doi: 10.1007/s11071-013-1049-7.  Google Scholar

[6]

Y. Li, Y. Fu and G. Duan, Robust passive control for T-S fuzzy systems, in ICIC: Computational Intelligence, (2006), 146–151. Google Scholar

[7]

L. Liu and L. Sun, Coordinated passivity controller design for SVC and generator excitation with state constraint, Control Engineering of China, 15 (2018), 63-72.   Google Scholar

[8]

Y. Liu and J. Zhao, Stabilization of switched nonlinear systems with passive and non-passive subsystems, Nonlinear Dynamics, 67 (2012), 1709-1716.  doi: 10.1007/s11071-011-0098-z.  Google Scholar

[9]

W. Lin and C. Qian, Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems, Systems & Control Letters, 39 (2000), 339-351.  doi: 10.1016/S0167-6911(99)00115-2.  Google Scholar

[10]

W. Lin and C. Qian, Adaptive regulation of high-order lower-triangular systems: an adding a power integrator technique, Systems & Control Letters, 39 (2000), 353-364.  doi: 10.1016/S0167-6911(99)00114-0.  Google Scholar

[11]

T. Reis and J. C. Willems, A balancing approach to the realization of systems with internal passivity and reciprocity, Systems and Control Letters, 60 (2011), 69-74.  doi: 10.1016/j.sysconle.2010.10.009.  Google Scholar

[12]

C. SunH. Sun and X. Diao, Continuous feedback control for a class of nonhomogeneous high-order nonlinear systems, Acta Automatica Sinca, 40 (2014), 149-155.   Google Scholar

[13]

J. Tian and X. Xie, Adaptive state-feedback stabilization for more general high-order stochastic nonlinear systems, Acta Autonatica Sinca, 34 (2008), 1188-1191.  doi: 10.3724/SP.J.1004.2008.01188.  Google Scholar

[14]

Z. WuG. SuP. Shi and J. Chu, Reliable control for SSs with time-varying delays, Lecture Notes in Control and Information Sciences, 443 (2013), 37-52.   Google Scholar

[15]

Z. Q. WuM. H. Song and L. Y. Fu, Passivity-based backstepping control for multimachine power system, Advanced Technology of Electrical Engineering and Energy, 32 (2013), 28-31.   Google Scholar

[16]

H. Xiao and L. Zhao, Robust passive control of uncertain switched time-delay systems: a sliding mode control design, Journal of Control Theory and Applications, 11 (2013), 96-102.  doi: 10.1007/s11768-013-1033-2.  Google Scholar

[17]

L. Yang, X. Liu et al., Exponentially dissipative control for singular impulsive dynamical systems, Journal of Dynamic systems, Measurement and Control, 139 (2017), 041008-1–041008-6. Google Scholar

[18]

L. YangX. Liu and Z. Zhang, Dissipative control for singular impulsive dynamical systems, Electronic Journal of Qualitative Theory of Differential Equations, 32 (2012), 1-11.  doi: 10.14232/ejqtde.2012.1.32.  Google Scholar

[1]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[2]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[3]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[4]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[5]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[6]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[7]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[8]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[9]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[10]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[11]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[12]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[13]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[14]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001

[15]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[16]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[17]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[18]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[19]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[20]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

 Impact Factor: 

Metrics

  • PDF downloads (84)
  • HTML views (386)
  • Cited by (0)

Other articles
by authors

[Back to Top]