• Previous Article
    A PID control method based on optimal control strategy
  • NACO Home
  • This Issue
  • Next Article
    Formal analysis of the Schulz matrix inversion algorithm: A paradigm towards computer aided verification of general matrix flow solvers
doi: 10.3934/naco.2020009

Passive control for a class of Nonlinear systems by using the technique of Adding a power integrator

1. 

School of Mathematics, Liaoning University, Shenyang, 110036, China

2. 

College of Science, Liaoning Shihua University, Fushun, 113001, China

* Corresponding author: Li Yang

Received  May 2019 Revised  October 2019 Published  February 2020

Fund Project: This work is supported by the scientific research fund LQN201712 of Liaoning Provincial Education Department.

This paper studies the problem of passive control for a class of uncertain nonlinear lower-triangle systems. We extend the feedback designing tool named adding a power integrator. By using it repeatedly, the passive controller is given. Under this designing method, we don't need the system to be feedback linearizable. Moreover, comparing with the backstepping technique, the coordinate in the controller designing process of this method does not need to be transformed.

Citation: Jinglai Qiao, Li Yang, Jiawei Yao. Passive control for a class of Nonlinear systems by using the technique of Adding a power integrator. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2020009
References:
[1]

W. Chen and M. Saif, Passivity and passivity based controller design of a class of switched control systems, in Proc. 16th IFAC World Congress, (2005), 143–147. Google Scholar

[2]

T. DengH. YaoJ. Du and J. Jiang, Neural network dynamic control for high-order nonlinear time-delay systems, Systems Engineering and Electronics, 36 (2014), 1152-1161.   Google Scholar

[3]

P. DoerfferO. Szulc and R. Bohing, Shock wave smearing by passive control, Journal of Thermal Science, 15 (2006), 43-47.   Google Scholar

[4]

A. T. EL-Sayed, Suppression of nonlinear vibration system described by nonlinear differential equations using passive controller, Nonlinear Dynamics, 78 (2014), 1683-1694.  doi: 10.1007/s11071-014-1550-7.  Google Scholar

[5]

U. K. Kocamaz and Y. Uyaroglu, Controlling Rucklidge chaotic system with a single controller using linear feedback and passive control methods, Nonlinear Dynamics, 75 (2014), 63-72.  doi: 10.1007/s11071-013-1049-7.  Google Scholar

[6]

Y. Li, Y. Fu and G. Duan, Robust passive control for T-S fuzzy systems, in ICIC: Computational Intelligence, (2006), 146–151. Google Scholar

[7]

L. Liu and L. Sun, Coordinated passivity controller design for SVC and generator excitation with state constraint, Control Engineering of China, 15 (2018), 63-72.   Google Scholar

[8]

Y. Liu and J. Zhao, Stabilization of switched nonlinear systems with passive and non-passive subsystems, Nonlinear Dynamics, 67 (2012), 1709-1716.  doi: 10.1007/s11071-011-0098-z.  Google Scholar

[9]

W. Lin and C. Qian, Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems, Systems & Control Letters, 39 (2000), 339-351.  doi: 10.1016/S0167-6911(99)00115-2.  Google Scholar

[10]

W. Lin and C. Qian, Adaptive regulation of high-order lower-triangular systems: an adding a power integrator technique, Systems & Control Letters, 39 (2000), 353-364.  doi: 10.1016/S0167-6911(99)00114-0.  Google Scholar

[11]

T. Reis and J. C. Willems, A balancing approach to the realization of systems with internal passivity and reciprocity, Systems and Control Letters, 60 (2011), 69-74.  doi: 10.1016/j.sysconle.2010.10.009.  Google Scholar

[12]

C. SunH. Sun and X. Diao, Continuous feedback control for a class of nonhomogeneous high-order nonlinear systems, Acta Automatica Sinca, 40 (2014), 149-155.   Google Scholar

[13]

J. Tian and X. Xie, Adaptive state-feedback stabilization for more general high-order stochastic nonlinear systems, Acta Autonatica Sinca, 34 (2008), 1188-1191.  doi: 10.3724/SP.J.1004.2008.01188.  Google Scholar

[14]

Z. WuG. SuP. Shi and J. Chu, Reliable control for SSs with time-varying delays, Lecture Notes in Control and Information Sciences, 443 (2013), 37-52.   Google Scholar

[15]

Z. Q. WuM. H. Song and L. Y. Fu, Passivity-based backstepping control for multimachine power system, Advanced Technology of Electrical Engineering and Energy, 32 (2013), 28-31.   Google Scholar

[16]

H. Xiao and L. Zhao, Robust passive control of uncertain switched time-delay systems: a sliding mode control design, Journal of Control Theory and Applications, 11 (2013), 96-102.  doi: 10.1007/s11768-013-1033-2.  Google Scholar

[17]

L. Yang, X. Liu et al., Exponentially dissipative control for singular impulsive dynamical systems, Journal of Dynamic systems, Measurement and Control, 139 (2017), 041008-1–041008-6. Google Scholar

[18]

L. YangX. Liu and Z. Zhang, Dissipative control for singular impulsive dynamical systems, Electronic Journal of Qualitative Theory of Differential Equations, 32 (2012), 1-11.  doi: 10.14232/ejqtde.2012.1.32.  Google Scholar

show all references

References:
[1]

W. Chen and M. Saif, Passivity and passivity based controller design of a class of switched control systems, in Proc. 16th IFAC World Congress, (2005), 143–147. Google Scholar

[2]

T. DengH. YaoJ. Du and J. Jiang, Neural network dynamic control for high-order nonlinear time-delay systems, Systems Engineering and Electronics, 36 (2014), 1152-1161.   Google Scholar

[3]

P. DoerfferO. Szulc and R. Bohing, Shock wave smearing by passive control, Journal of Thermal Science, 15 (2006), 43-47.   Google Scholar

[4]

A. T. EL-Sayed, Suppression of nonlinear vibration system described by nonlinear differential equations using passive controller, Nonlinear Dynamics, 78 (2014), 1683-1694.  doi: 10.1007/s11071-014-1550-7.  Google Scholar

[5]

U. K. Kocamaz and Y. Uyaroglu, Controlling Rucklidge chaotic system with a single controller using linear feedback and passive control methods, Nonlinear Dynamics, 75 (2014), 63-72.  doi: 10.1007/s11071-013-1049-7.  Google Scholar

[6]

Y. Li, Y. Fu and G. Duan, Robust passive control for T-S fuzzy systems, in ICIC: Computational Intelligence, (2006), 146–151. Google Scholar

[7]

L. Liu and L. Sun, Coordinated passivity controller design for SVC and generator excitation with state constraint, Control Engineering of China, 15 (2018), 63-72.   Google Scholar

[8]

Y. Liu and J. Zhao, Stabilization of switched nonlinear systems with passive and non-passive subsystems, Nonlinear Dynamics, 67 (2012), 1709-1716.  doi: 10.1007/s11071-011-0098-z.  Google Scholar

[9]

W. Lin and C. Qian, Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems, Systems & Control Letters, 39 (2000), 339-351.  doi: 10.1016/S0167-6911(99)00115-2.  Google Scholar

[10]

W. Lin and C. Qian, Adaptive regulation of high-order lower-triangular systems: an adding a power integrator technique, Systems & Control Letters, 39 (2000), 353-364.  doi: 10.1016/S0167-6911(99)00114-0.  Google Scholar

[11]

T. Reis and J. C. Willems, A balancing approach to the realization of systems with internal passivity and reciprocity, Systems and Control Letters, 60 (2011), 69-74.  doi: 10.1016/j.sysconle.2010.10.009.  Google Scholar

[12]

C. SunH. Sun and X. Diao, Continuous feedback control for a class of nonhomogeneous high-order nonlinear systems, Acta Automatica Sinca, 40 (2014), 149-155.   Google Scholar

[13]

J. Tian and X. Xie, Adaptive state-feedback stabilization for more general high-order stochastic nonlinear systems, Acta Autonatica Sinca, 34 (2008), 1188-1191.  doi: 10.3724/SP.J.1004.2008.01188.  Google Scholar

[14]

Z. WuG. SuP. Shi and J. Chu, Reliable control for SSs with time-varying delays, Lecture Notes in Control and Information Sciences, 443 (2013), 37-52.   Google Scholar

[15]

Z. Q. WuM. H. Song and L. Y. Fu, Passivity-based backstepping control for multimachine power system, Advanced Technology of Electrical Engineering and Energy, 32 (2013), 28-31.   Google Scholar

[16]

H. Xiao and L. Zhao, Robust passive control of uncertain switched time-delay systems: a sliding mode control design, Journal of Control Theory and Applications, 11 (2013), 96-102.  doi: 10.1007/s11768-013-1033-2.  Google Scholar

[17]

L. Yang, X. Liu et al., Exponentially dissipative control for singular impulsive dynamical systems, Journal of Dynamic systems, Measurement and Control, 139 (2017), 041008-1–041008-6. Google Scholar

[18]

L. YangX. Liu and Z. Zhang, Dissipative control for singular impulsive dynamical systems, Electronic Journal of Qualitative Theory of Differential Equations, 32 (2012), 1-11.  doi: 10.14232/ejqtde.2012.1.32.  Google Scholar

[1]

Atte Aalto, Jarmo Malinen. Compositions of passive boundary control systems. Mathematical Control & Related Fields, 2013, 3 (1) : 1-19. doi: 10.3934/mcrf.2013.3.1

[2]

Liqiang Jin, Yanyan Yin, Kok Lay Teo, Fei Liu. Event-triggered mixed $ H_\infty $ and passive control for Markov jump systems with bounded inputs. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2020024

[3]

Rod Cross, Victor Kozyakin. Double exponential instability of triangular arbitrage systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 349-376. doi: 10.3934/dcdsb.2013.18.349

[4]

Wenxue Huang, Xiaofeng Li, Yuanyi Pan. Increase statistical reliability without losing predictive power by merging classes and adding variables. Big Data & Information Analytics, 2016, 1 (4) : 341-347. doi: 10.3934/bdia.2016014

[5]

Qilong Zhai, Ran Zhang. Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 403-413. doi: 10.3934/dcdsb.2018091

[6]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[7]

Ruth F. Curtain, George Weiss. Strong stabilization of (almost) impedance passive systems by static output feedback. Mathematical Control & Related Fields, 2019, 9 (4) : 643-671. doi: 10.3934/mcrf.2019045

[8]

M. Motta, C. Sartori. Exit time problems for nonlinear unbounded control systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 137-156. doi: 10.3934/dcds.1999.5.137

[9]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[10]

Chunjiang Qian, Wei Lin, Wenting Zha. Generalized homogeneous systems with applications to nonlinear control: A survey. Mathematical Control & Related Fields, 2015, 5 (3) : 585-611. doi: 10.3934/mcrf.2015.5.585

[11]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[12]

Jonathan E. Rubin, Justyna Signerska-Rynkowska, Jonathan D. Touboul, Alexandre Vidal. Wild oscillations in a nonlinear neuron model with resets: (Ⅰ) Bursting, spike-adding and chaos. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3967-4002. doi: 10.3934/dcdsb.2017204

[13]

Canghua Jiang, Zhiqiang Guo, Xin Li, Hai Wang, Ming Yu. An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020109

[14]

Zbigniew Bartosiewicz, Ülle Kotta, Maris Tőnso, Małgorzata Wyrwas. Accessibility conditions of MIMO nonlinear control systems on homogeneous time scales. Mathematical Control & Related Fields, 2016, 6 (2) : 217-250. doi: 10.3934/mcrf.2016002

[15]

V. Rehbock, K.L. Teo, L.S. Jennings. Suboptimal feedback control for a class of nonlinear systems using spline interpolation. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 223-236. doi: 10.3934/dcds.1995.1.223

[16]

Suoqin Jin, Fang-Xiang Wu, Xiufen Zou. Domain control of nonlinear networked systems and applications to complex disease networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2169-2206. doi: 10.3934/dcdsb.2017091

[17]

Jifeng Chu, Jinzhi Lei, Meirong Zhang. Lyapunov stability for conservative systems with lower degrees of freedom. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 423-443. doi: 10.3934/dcdsb.2011.16.423

[18]

Gildas Besançon, Didier Georges, Zohra Benayache. Towards nonlinear delay-based control for convection-like distributed systems: The example of water flow control in open channel systems. Networks & Heterogeneous Media, 2009, 4 (2) : 211-221. doi: 10.3934/nhm.2009.4.211

[19]

Alberto Boscaggin, Fabio Zanolin. Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 89-110. doi: 10.3934/dcds.2013.33.89

[20]

Olivier Guibé, Anna Mercaldo. Uniqueness results for noncoercive nonlinear elliptic equations with two lower order terms. Communications on Pure & Applied Analysis, 2008, 7 (1) : 163-192. doi: 10.3934/cpaa.2008.7.163

 Impact Factor: 

Article outline

[Back to Top]