
-
Previous Article
Decoupling of cubic polynomial matrix systems
- NACO Home
- This Issue
- Next Article
Fault-tolerant control against actuator failures for uncertain singular fractional order systems
School of Sciences, Northeastern University, Shenyang 110819, China |
A method of designing observer-based feedback controller against actuator failures for uncertain singular fractional order systems (SFOS) is presented in this paper. By establishing actuator fault model and state observer, an observer-based fault-tolerant state feedback controller is developed such that the closed-loop SFOS is admissible. The controller designed by the proposed method guarantees that the closed-loop system is regular, impulse-free and stable in the event of actuator failures. Finally, a numerical example is given to illustrate the effectiveness of the proposed design method.
References:
[1] |
H. S. Ahn and Y. Q. Chen,
Necessary and sufficient stability condition of fractional$-$order interval linear systems, Automatica, 44 (2008), 2985-2988.
doi: 10.1016/j.automatica.2008.07.003. |
[2] |
M. Blanke, M. Kinnaert, J. Lunze and M. Staroswiecki, Diagnosisi and Fault-Tolerant Control, Springer, Berlin, Germany, 2006.
doi: 10.1007/978-3-540-35653-0. |
[3] |
M. Blanke, R. Izadi-Zamanabadi, S. A. Bogh and C. P. Lunau,
Fault-tolerant control systems$-$a holistic view, Contol Engineering Prac., 5 (1997), 693-702.
doi: 10.1016/s0967-0661(97)00051-8. |
[4] |
L. L. Fan and Y. D. Song,
Neuro$-$adaptive model$-$referance fault$-$tolerant control with application to wind turbines, IET Control Theory & Appl., 6 (2012), 475-486.
doi: 10.1049/iet-cta.2011.0250. |
[5] |
C. Farges, M. Moze and J. Sabatier,
Pseudo-state feedback stabilization of commensurate fractional order systems, Automatica, 46 (2010), 1730-1734.
doi: 10.1016/j.automatica.2010.06.038. |
[6] |
C. Farges, J. Sabatier and M. Moze, Robust stability analysis and stabilization of fractional order polytopic systems , Preprints of the 18th IFAC World Congress, (2011), Milano, Italy, 10800-10805.
doi: 10.3182/20110828-6-IT-1002.00779. |
[7] |
Bin Guo and Yong Chen,
Adaptive fault tolerant control for time-varying delay system withactuator fault and mismatched disturbance, ISA Transcation, 89 (2019), 122-130.
doi: 10.1016/j.isatra.2018.12.024. |
[8] |
Q. Hu, B. Xiao and M. I. Friswll,
Robust fault$-$tolerant control for spacecraft attitude stabilisation subject to input saturation, IET Control Theory & Appl., 5 (2011), 271-282.
doi: 10.1049/iet-cta.2009.0628. |
[9] |
S. D. Huang, J. Lam, G. H. Yang and S. Y. Zhang,
Fault tolerant decentralized $H_\infty$ control for symmetric composite systems, IEEE Trans. Autom. Control, 44 (1999), 2108-2114.
doi: 10.1109/9.802926. |
[10] |
R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, Berlin, Germany, 2006.
doi: 10.1007/3-540-30368-5. |
[11] |
L. A. Jacyntho, M. C. M. Teixeira and E. Assunco,
Identification of fractional-order transfer functions using a step excitation, IEEE Trans. Circuits Syst., 62 (2015), 896-900.
doi: 10.1109/tcsii.2015.2436052. |
[12] |
Y. Jiang, Q. L. Hu and G. F. Ma,
Adaptive backsteping fault$-$tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures, ISA Transcations, 49 (2010), 57-69.
doi: 10.1016/j.isatra.2009.08.003. |
[13] |
E. Last,
Linear matrix inequalities in system and control theory, Proceedings of the IEEE, 86 (1994), 2473-2474.
doi: 10.1109/JPROC.1998.735454. |
[14] |
X. J. Li and G. H. Yang,
Robust adaptive fault$-$tolerant control for uncertain linear systems with actuator failures, IET Control Theory & Appl., 6 (2012), 1544-1551.
doi: 10.1049/iet-cta.2011.0599. |
[15] |
Y. Li, Y. Q. Chen and I. Podlubny,
Stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965-1969.
doi: 10.1016/j.automatica.2009.04.003. |
[16] |
C. Lin, B. Chen, P. Shi and J. P. Yu,
Necessary and sufficient conditions of observer$-$based stabilization for a class of fractional$-$order descriptor systems, Systems & Control Letters, 112 (2018), 31-35.
doi: 10.1016/j.sysconle.2017.12.004. |
[17] |
J. G. Lu and G. R. Chen,
Robust stability and stabilization of fractional order interval systems: An LMI approach, IEEE Transactions on Automatic Control, 54 (2009), 1294-1299.
doi: 10.1109/tac.2009.2013056. |
[18] |
J. G. Lu and Y. Q. Chen,
Robust stability and stabilization of fractional order interval systems with the fractional order $\alpha$ : The $0 <\alpha<1$ case, IEEE Transactions on Automatic Control, 55 (2010), 152-158.
doi: 10.1109/TAC.2009.2033738. |
[19] |
H. J. Ma and G. H. Yang,
Detection and adaptive accommodation for actuator faults of a class of non$-$linear systems, IET Control Theory & Appl., 6 (2012), 2292-2307.
doi: 10.1049/iet-cta.2011.0265. |
[20] |
S. Marir, M. Chadli and D. Bouagada,
New admissibility conditions for singular linear continuous$-$time fractional$-$order systems, Jouranl of the Franklin Institute, 354 (2017), 752-766.
doi: 10.1016/j.jfranklin.2016.10.022. |
[21] |
S. Marir, M. Chadli and D. Bouagada,
A novel approach of admissibility for singular linear continuous$-$time fractional$-$order systems, International Journal of Control, Automation and Systems, 15 (2017), 959-964.
doi: 10.1007/s12555-016-0003-0. |
[22] |
D. Matignon, Stability results for fractional differential equations with applications to control processing , Proc. Computational Engineering in Systems and Applications Multiconferences (IMACS), (1996), 963–868. Google Scholar |
[23] |
C. Peng, T. C. Yang and E. G. Tian,
Robust fault-tolerant control of networked control systems with stochastic actuator failure, IET Control Theory & Appl., 4 (2012), 3003-3011.
doi: 10.1049/iet-cta.2009.0427. |
[24] |
I. Podlubny,
Fractional$-$order systems and $PI^\lambda D^\mu-$controllers, IEEE Transactions on Automat. Control, 44 (1999), 208-214.
doi: 10.1109/9.739144. |
[25] |
I. Podlubny, Fractional Differertial Equations, Academic Press, New York, 1999.
doi: 10.1007/978-3-642-39765-33.![]() |
[26] |
H. Shen, X. N. Song and Z. Wang,
Robust fault-tolerant control of uncertain fractional-order systems against actuator faults, IET Control Theory & Appl., 7 (2013), 1233-1241.
doi: 10.1049/iet-cta.2012.0822. |
[27] |
J. Shen and J. D. Cao,
Necessary and sufficient conditions for consensus of delayed fractional$-$order systems, Asian J. Control, 14 (2012), 1690-1697.
doi: 10.1002/asjc.492. |
[28] |
X. N. Song, Y. Q. Chen and H. Shen, LMI fault tolerant control for interval fractional-order systems with sensor failures , Proc. Fourth IFAC Workshop Fractional Differentiation and its Applications, (2010), Article no. FDA10-126, Badajoz, Spain. Google Scholar |
[29] |
X. N. Song and H. Shen,
Fault tolerant control for interval fractional-order systems with sensor failures, Advances in Mathematical Physics, 2013 (2013), 1-11.
doi: 10.1155/2013/836743. |
[30] |
F. Tao and Q. Zhao,
Synthesis of active fault$-$tolerant control based on Markovian jump system models, IET Control Theory & Appl., 1 (2007), 1160-1168.
doi: 10.1049/iet-cta:20050492. |
[31] |
M. Tavakoli-Kakhki and M. S. Tavazoei,
Estimation of the order and parameters of a fractional order model from a noisy step response data, Journal of Dynamic Systems, Measurement Control, 136 (2014), 1-7.
doi: 10.1115/1.4026345. |
[32] |
E. Uezato and M. Ikeda, Strict LMI conditions for stability, robust stabilization, and $H_\infty$ control of descriptor systems , IEEE Conference on Decision & Contol. IEEE, (1994), 4092–4097.
doi: 10.1109/CDC.1999.828001. |
[33] |
Y. H. Wei, P. W. Tse, Y. Zhao and Y. Wang,
The output feedback control synthesis for a class of singular fractional order systems, ISA Transactions, 69 (2017), 1-9.
doi: 10.1016/j.isatra.2017.04.020. |
[34] |
Y. H. Wei, J. C. Wang, T. Y. Liu and Y. Wang,
Sufficient and necessary conditions for stabilizing singular fractional order systems with partially measurable state, Jouranl of the Franklin Institute, 356 (2019), 1975-1990.
doi: 10.1016/j.jfranklin.2019.01.022. |
[35] |
Z. G. Wu, P. Shi, H. Y. Su and J. Chu,
Reliable $H_\infty$ control for control for discrete$-$time fuzzy systems with infinite$-$distributed delay, IEEE Trans. on Fuzzy Syst., 20 (2012), 22-31.
doi: 10.1109/TFUZZ.2011.2162850. |
[36] |
L. H. Xie,
Output feedback $H_\infty$ control of systems with parameter uncertainty, International Journal of Control, 63 (1996), 741-750.
doi: 10.1080/00207179608921866. |
[37] |
S. Y. Xu and J. Lam, Robust Control and Filtering of Singular Systems, Springer, Berlin, 2006.
doi: 10.1080/00207721.2014.998751. |
[38] |
G. H. Yang, J. L. Wang and Y. C. Soh,
Reliable $H_\infty$ controller design for linear systems, Automatica, 37 (2001), 717-725.
doi: 10.1016/S0005-1098(01)00007-3. |
[39] |
H. Yang, V. Cocquempot and B. Jiang,
Robust fault tolerant tracking control with application to hybrid nonlinear systems, Control Theory & Appl., 3 (2009), 211-224.
doi: 10.1049/iet-cta:20080015. |
[40] |
T. Zhan and S. P. Ma,
The controller design for singular fractional-order systems with fractional order $0<\alpha<1$, The ANZIAM Journal, 60 (2018), 230-248.
doi: 10.1017/S1446181118000202. |
[41] |
X. F. Zhang and Y. Q. Chen, D$-$stability based LMI criteria of stability and stabilization for fractional order systems , ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2015-46692, (2015), 1–6. Google Scholar |
[42] |
X. F. Zhang and Y. Q. Chen,
Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order $\alpha$: The $0<\alpha<1$ case, ISA Transcations, 82 (2018), 42-50.
doi: 10.1016/j.isatra.2017.03.008. |
show all references
References:
[1] |
H. S. Ahn and Y. Q. Chen,
Necessary and sufficient stability condition of fractional$-$order interval linear systems, Automatica, 44 (2008), 2985-2988.
doi: 10.1016/j.automatica.2008.07.003. |
[2] |
M. Blanke, M. Kinnaert, J. Lunze and M. Staroswiecki, Diagnosisi and Fault-Tolerant Control, Springer, Berlin, Germany, 2006.
doi: 10.1007/978-3-540-35653-0. |
[3] |
M. Blanke, R. Izadi-Zamanabadi, S. A. Bogh and C. P. Lunau,
Fault-tolerant control systems$-$a holistic view, Contol Engineering Prac., 5 (1997), 693-702.
doi: 10.1016/s0967-0661(97)00051-8. |
[4] |
L. L. Fan and Y. D. Song,
Neuro$-$adaptive model$-$referance fault$-$tolerant control with application to wind turbines, IET Control Theory & Appl., 6 (2012), 475-486.
doi: 10.1049/iet-cta.2011.0250. |
[5] |
C. Farges, M. Moze and J. Sabatier,
Pseudo-state feedback stabilization of commensurate fractional order systems, Automatica, 46 (2010), 1730-1734.
doi: 10.1016/j.automatica.2010.06.038. |
[6] |
C. Farges, J. Sabatier and M. Moze, Robust stability analysis and stabilization of fractional order polytopic systems , Preprints of the 18th IFAC World Congress, (2011), Milano, Italy, 10800-10805.
doi: 10.3182/20110828-6-IT-1002.00779. |
[7] |
Bin Guo and Yong Chen,
Adaptive fault tolerant control for time-varying delay system withactuator fault and mismatched disturbance, ISA Transcation, 89 (2019), 122-130.
doi: 10.1016/j.isatra.2018.12.024. |
[8] |
Q. Hu, B. Xiao and M. I. Friswll,
Robust fault$-$tolerant control for spacecraft attitude stabilisation subject to input saturation, IET Control Theory & Appl., 5 (2011), 271-282.
doi: 10.1049/iet-cta.2009.0628. |
[9] |
S. D. Huang, J. Lam, G. H. Yang and S. Y. Zhang,
Fault tolerant decentralized $H_\infty$ control for symmetric composite systems, IEEE Trans. Autom. Control, 44 (1999), 2108-2114.
doi: 10.1109/9.802926. |
[10] |
R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, Berlin, Germany, 2006.
doi: 10.1007/3-540-30368-5. |
[11] |
L. A. Jacyntho, M. C. M. Teixeira and E. Assunco,
Identification of fractional-order transfer functions using a step excitation, IEEE Trans. Circuits Syst., 62 (2015), 896-900.
doi: 10.1109/tcsii.2015.2436052. |
[12] |
Y. Jiang, Q. L. Hu and G. F. Ma,
Adaptive backsteping fault$-$tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures, ISA Transcations, 49 (2010), 57-69.
doi: 10.1016/j.isatra.2009.08.003. |
[13] |
E. Last,
Linear matrix inequalities in system and control theory, Proceedings of the IEEE, 86 (1994), 2473-2474.
doi: 10.1109/JPROC.1998.735454. |
[14] |
X. J. Li and G. H. Yang,
Robust adaptive fault$-$tolerant control for uncertain linear systems with actuator failures, IET Control Theory & Appl., 6 (2012), 1544-1551.
doi: 10.1049/iet-cta.2011.0599. |
[15] |
Y. Li, Y. Q. Chen and I. Podlubny,
Stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965-1969.
doi: 10.1016/j.automatica.2009.04.003. |
[16] |
C. Lin, B. Chen, P. Shi and J. P. Yu,
Necessary and sufficient conditions of observer$-$based stabilization for a class of fractional$-$order descriptor systems, Systems & Control Letters, 112 (2018), 31-35.
doi: 10.1016/j.sysconle.2017.12.004. |
[17] |
J. G. Lu and G. R. Chen,
Robust stability and stabilization of fractional order interval systems: An LMI approach, IEEE Transactions on Automatic Control, 54 (2009), 1294-1299.
doi: 10.1109/tac.2009.2013056. |
[18] |
J. G. Lu and Y. Q. Chen,
Robust stability and stabilization of fractional order interval systems with the fractional order $\alpha$ : The $0 <\alpha<1$ case, IEEE Transactions on Automatic Control, 55 (2010), 152-158.
doi: 10.1109/TAC.2009.2033738. |
[19] |
H. J. Ma and G. H. Yang,
Detection and adaptive accommodation for actuator faults of a class of non$-$linear systems, IET Control Theory & Appl., 6 (2012), 2292-2307.
doi: 10.1049/iet-cta.2011.0265. |
[20] |
S. Marir, M. Chadli and D. Bouagada,
New admissibility conditions for singular linear continuous$-$time fractional$-$order systems, Jouranl of the Franklin Institute, 354 (2017), 752-766.
doi: 10.1016/j.jfranklin.2016.10.022. |
[21] |
S. Marir, M. Chadli and D. Bouagada,
A novel approach of admissibility for singular linear continuous$-$time fractional$-$order systems, International Journal of Control, Automation and Systems, 15 (2017), 959-964.
doi: 10.1007/s12555-016-0003-0. |
[22] |
D. Matignon, Stability results for fractional differential equations with applications to control processing , Proc. Computational Engineering in Systems and Applications Multiconferences (IMACS), (1996), 963–868. Google Scholar |
[23] |
C. Peng, T. C. Yang and E. G. Tian,
Robust fault-tolerant control of networked control systems with stochastic actuator failure, IET Control Theory & Appl., 4 (2012), 3003-3011.
doi: 10.1049/iet-cta.2009.0427. |
[24] |
I. Podlubny,
Fractional$-$order systems and $PI^\lambda D^\mu-$controllers, IEEE Transactions on Automat. Control, 44 (1999), 208-214.
doi: 10.1109/9.739144. |
[25] |
I. Podlubny, Fractional Differertial Equations, Academic Press, New York, 1999.
doi: 10.1007/978-3-642-39765-33.![]() |
[26] |
H. Shen, X. N. Song and Z. Wang,
Robust fault-tolerant control of uncertain fractional-order systems against actuator faults, IET Control Theory & Appl., 7 (2013), 1233-1241.
doi: 10.1049/iet-cta.2012.0822. |
[27] |
J. Shen and J. D. Cao,
Necessary and sufficient conditions for consensus of delayed fractional$-$order systems, Asian J. Control, 14 (2012), 1690-1697.
doi: 10.1002/asjc.492. |
[28] |
X. N. Song, Y. Q. Chen and H. Shen, LMI fault tolerant control for interval fractional-order systems with sensor failures , Proc. Fourth IFAC Workshop Fractional Differentiation and its Applications, (2010), Article no. FDA10-126, Badajoz, Spain. Google Scholar |
[29] |
X. N. Song and H. Shen,
Fault tolerant control for interval fractional-order systems with sensor failures, Advances in Mathematical Physics, 2013 (2013), 1-11.
doi: 10.1155/2013/836743. |
[30] |
F. Tao and Q. Zhao,
Synthesis of active fault$-$tolerant control based on Markovian jump system models, IET Control Theory & Appl., 1 (2007), 1160-1168.
doi: 10.1049/iet-cta:20050492. |
[31] |
M. Tavakoli-Kakhki and M. S. Tavazoei,
Estimation of the order and parameters of a fractional order model from a noisy step response data, Journal of Dynamic Systems, Measurement Control, 136 (2014), 1-7.
doi: 10.1115/1.4026345. |
[32] |
E. Uezato and M. Ikeda, Strict LMI conditions for stability, robust stabilization, and $H_\infty$ control of descriptor systems , IEEE Conference on Decision & Contol. IEEE, (1994), 4092–4097.
doi: 10.1109/CDC.1999.828001. |
[33] |
Y. H. Wei, P. W. Tse, Y. Zhao and Y. Wang,
The output feedback control synthesis for a class of singular fractional order systems, ISA Transactions, 69 (2017), 1-9.
doi: 10.1016/j.isatra.2017.04.020. |
[34] |
Y. H. Wei, J. C. Wang, T. Y. Liu and Y. Wang,
Sufficient and necessary conditions for stabilizing singular fractional order systems with partially measurable state, Jouranl of the Franklin Institute, 356 (2019), 1975-1990.
doi: 10.1016/j.jfranklin.2019.01.022. |
[35] |
Z. G. Wu, P. Shi, H. Y. Su and J. Chu,
Reliable $H_\infty$ control for control for discrete$-$time fuzzy systems with infinite$-$distributed delay, IEEE Trans. on Fuzzy Syst., 20 (2012), 22-31.
doi: 10.1109/TFUZZ.2011.2162850. |
[36] |
L. H. Xie,
Output feedback $H_\infty$ control of systems with parameter uncertainty, International Journal of Control, 63 (1996), 741-750.
doi: 10.1080/00207179608921866. |
[37] |
S. Y. Xu and J. Lam, Robust Control and Filtering of Singular Systems, Springer, Berlin, 2006.
doi: 10.1080/00207721.2014.998751. |
[38] |
G. H. Yang, J. L. Wang and Y. C. Soh,
Reliable $H_\infty$ controller design for linear systems, Automatica, 37 (2001), 717-725.
doi: 10.1016/S0005-1098(01)00007-3. |
[39] |
H. Yang, V. Cocquempot and B. Jiang,
Robust fault tolerant tracking control with application to hybrid nonlinear systems, Control Theory & Appl., 3 (2009), 211-224.
doi: 10.1049/iet-cta:20080015. |
[40] |
T. Zhan and S. P. Ma,
The controller design for singular fractional-order systems with fractional order $0<\alpha<1$, The ANZIAM Journal, 60 (2018), 230-248.
doi: 10.1017/S1446181118000202. |
[41] |
X. F. Zhang and Y. Q. Chen, D$-$stability based LMI criteria of stability and stabilization for fractional order systems , ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2015-46692, (2015), 1–6. Google Scholar |
[42] |
X. F. Zhang and Y. Q. Chen,
Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order $\alpha$: The $0<\alpha<1$ case, ISA Transcations, 82 (2018), 42-50.
doi: 10.1016/j.isatra.2017.03.008. |



[1] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
[2] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[3] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[4] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[5] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[6] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[7] |
Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024 |
[8] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[9] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446 |
[10] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[11] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[12] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[13] |
Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2020056 |
[14] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[15] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[16] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[17] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031 |
[18] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[19] |
Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021038 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]