-
Previous Article
On the GSOR iteration method for image restoration
- NACO Home
- This Issue
-
Next Article
Fault-tolerant control against actuator failures for uncertain singular fractional order systems
Decoupling of cubic polynomial matrix systems
1. | School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China |
2. | School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China |
3. | School of Science, Shenyang University of Technology, Shenyang 110870, China |
The decoupling of polynomial matrix system is to diagonalize its system matrix. In this paper, decoupling problems for cubic polynomial matrix system are considered. The decoupling conditions for a class of cubic polynomial matrix systems are derived under strict equivalence transformation. By using linearization, isospectral decoupling method for cubic polynomial matrix system is proposed. To be specific, necessary and sufficient conditions of isospectral diagonalization for nonsingular cubic polynomial matrix are given. These results are extended to singular cubic polynomial matrix. Solving processes are given to obtain isospectral diagonal cubic polynomial matrix for nonsingular and singular cases. Finally, illustrating examples are provided to verify the main results.
References:
[1] |
M. Chu and N. Del Buono, Total decoupling of general quadratic pencils, Part Ⅰ: Theory, Journal of Sound and Vibration, 309 (2008), 96-111. Google Scholar |
[2] |
M. Chu and N. Del Buono, Total decoupling of general quadratic pencils, Part Ⅱ: Structure preserving isospectral flows, Journal of Sound and Vibration, 309 (2008), 112-128. Google Scholar |
[3] |
G. R. Duan, Analysis and Design of Descriptor Linear Systems , Springer, 2010.
doi: 10.1007/978-1-4419-6397-0. |
[4] |
I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials, Academic Press, New York, 1982.
doi: 10.1137/1.9780898719024.![]() ![]() |
[5] |
D. Henrion and J. C. Zúñiga, Detecting infinite zeros in polynomial matrices, IEEE Trans. Circuits and systems Ⅱ-Express Briefs, 52 (2005), 744-745. Google Scholar |
[6] |
S. Johansson, B. Kågström and P. Van Dooren,
Stratification of full rank polynomial matrices, Linear Algebra and its Applications, 439 (2013), 1062-1090.
doi: 10.1016/j.laa.2012.12.013. |
[7] |
D. T. Kawano, M. Morzfeld and F. Ma, The decoupling of second-order linear systems with a singular mass matrix, Journal of Sound and Vibration, 332 (2013), 6829-6846. Google Scholar |
[8] |
P. Lancaster and M. Tismenetsky, The Theory of Matrices, Academic Press, Orlando, 1985.
![]() |
[9] |
P. Lancaster and L. Rodman,
Canonical forms for Hermitian matrix pairs under strict equivalence and congruence, SIAM Review, 47 (2005), 407-443.
doi: 10.1137/S003614450444556X. |
[10] |
P. Lancaster,
Linearization of regular matrix polynomials, Electronic Journal of Linear Algebra, 17 (2008), 21-27.
doi: 10.13001/1081-3810.1246. |
[11] |
P. Lancaster and I. Zaballa, Diagonalizable quadratic eigenvalue problems, Mechanical Systems and Signal Processing, 23 (2009), 1134-1144. Google Scholar |
[12] |
D. S. Mackey, N. Mackey, C. Mehl and V. Mehrmann,
Vector spaces of linearizations for matrix polynomials, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 971-1004.
doi: 10.1137/050628350. |
[13] |
M. Morzfeld and F. Ma, The decoupling of damped linear systems in configuration and state spaces, Journal of Sound and Vibration, 330 (2011), 155-161. Google Scholar |
[14] |
L. Taslaman, F. Tisseur and I. Zaballa,
Triangularizing matrix polynomials, Linear Algebra and Its Applications, 439 (2013), 1679-1699.
doi: 10.1016/j.laa.2013.05.006. |
[15] |
F. D. Terán, F. M. Dopico and D. S. Mackey,
Linearizations of singular matrix polynomials and the recovery of minimal indices, Electronic Journal of Linear Algebra, 18 (2009), 371-402.
doi: 10.13001/1081-3810.1320. |
[16] |
F. D. Terán, F. M. Dopico and D. S. Mackey,
Spectral equivalence of matrix polynomials and the index sum theorem, Linear Algebra and Its Applications, 459 (2014), 264-333.
doi: 10.1016/j.laa.2014.07.007. |
[17] |
F. Tisseur, S. D. Garvey and C. Munro,
Deflating quadratic matrix polynomials with structure preserving transformations, Linear Algebra and Its Applications, 435 (2011), 464-479.
doi: 10.1016/j.laa.2010.06.028. |
[18] |
F. Tisseur and I. Zaballa,
Triangularizing quadratic matrix polynomials, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 312-337.
doi: 10.1137/120867640. |
[19] |
C. Tunc,
On the existence of periodic solutions of functional differential equations of the third order, Applied and Computational Mathematics, 15 (2016), 189-199.
|
[20] |
A. I. Vardulakis, Linear Multivariable Control: Algebraic Analysis and Synthesis Methods , Wiley, Chichester, U. K. 1991. |
[21] | D. Z. Zheng, Linear System Theory, 2$^nd$ edition, Tsinghua University Press, Beijing, 2002. Google Scholar |
[22] |
J. C. Zúñiga Anaya, On diagonalizable quadratic eigenvalue problems , Note#2. Technical Note, March 2009. Google Scholar |
[23] |
J. C. Zúñiga Anaya,
Diagonalization of quadratic matrix polynomials, System & Control Letters, 59 (2010), 105-113.
doi: 10.1016/j.sysconle.2009.12.005. |
show all references
References:
[1] |
M. Chu and N. Del Buono, Total decoupling of general quadratic pencils, Part Ⅰ: Theory, Journal of Sound and Vibration, 309 (2008), 96-111. Google Scholar |
[2] |
M. Chu and N. Del Buono, Total decoupling of general quadratic pencils, Part Ⅱ: Structure preserving isospectral flows, Journal of Sound and Vibration, 309 (2008), 112-128. Google Scholar |
[3] |
G. R. Duan, Analysis and Design of Descriptor Linear Systems , Springer, 2010.
doi: 10.1007/978-1-4419-6397-0. |
[4] |
I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials, Academic Press, New York, 1982.
doi: 10.1137/1.9780898719024.![]() ![]() |
[5] |
D. Henrion and J. C. Zúñiga, Detecting infinite zeros in polynomial matrices, IEEE Trans. Circuits and systems Ⅱ-Express Briefs, 52 (2005), 744-745. Google Scholar |
[6] |
S. Johansson, B. Kågström and P. Van Dooren,
Stratification of full rank polynomial matrices, Linear Algebra and its Applications, 439 (2013), 1062-1090.
doi: 10.1016/j.laa.2012.12.013. |
[7] |
D. T. Kawano, M. Morzfeld and F. Ma, The decoupling of second-order linear systems with a singular mass matrix, Journal of Sound and Vibration, 332 (2013), 6829-6846. Google Scholar |
[8] |
P. Lancaster and M. Tismenetsky, The Theory of Matrices, Academic Press, Orlando, 1985.
![]() |
[9] |
P. Lancaster and L. Rodman,
Canonical forms for Hermitian matrix pairs under strict equivalence and congruence, SIAM Review, 47 (2005), 407-443.
doi: 10.1137/S003614450444556X. |
[10] |
P. Lancaster,
Linearization of regular matrix polynomials, Electronic Journal of Linear Algebra, 17 (2008), 21-27.
doi: 10.13001/1081-3810.1246. |
[11] |
P. Lancaster and I. Zaballa, Diagonalizable quadratic eigenvalue problems, Mechanical Systems and Signal Processing, 23 (2009), 1134-1144. Google Scholar |
[12] |
D. S. Mackey, N. Mackey, C. Mehl and V. Mehrmann,
Vector spaces of linearizations for matrix polynomials, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 971-1004.
doi: 10.1137/050628350. |
[13] |
M. Morzfeld and F. Ma, The decoupling of damped linear systems in configuration and state spaces, Journal of Sound and Vibration, 330 (2011), 155-161. Google Scholar |
[14] |
L. Taslaman, F. Tisseur and I. Zaballa,
Triangularizing matrix polynomials, Linear Algebra and Its Applications, 439 (2013), 1679-1699.
doi: 10.1016/j.laa.2013.05.006. |
[15] |
F. D. Terán, F. M. Dopico and D. S. Mackey,
Linearizations of singular matrix polynomials and the recovery of minimal indices, Electronic Journal of Linear Algebra, 18 (2009), 371-402.
doi: 10.13001/1081-3810.1320. |
[16] |
F. D. Terán, F. M. Dopico and D. S. Mackey,
Spectral equivalence of matrix polynomials and the index sum theorem, Linear Algebra and Its Applications, 459 (2014), 264-333.
doi: 10.1016/j.laa.2014.07.007. |
[17] |
F. Tisseur, S. D. Garvey and C. Munro,
Deflating quadratic matrix polynomials with structure preserving transformations, Linear Algebra and Its Applications, 435 (2011), 464-479.
doi: 10.1016/j.laa.2010.06.028. |
[18] |
F. Tisseur and I. Zaballa,
Triangularizing quadratic matrix polynomials, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 312-337.
doi: 10.1137/120867640. |
[19] |
C. Tunc,
On the existence of periodic solutions of functional differential equations of the third order, Applied and Computational Mathematics, 15 (2016), 189-199.
|
[20] |
A. I. Vardulakis, Linear Multivariable Control: Algebraic Analysis and Synthesis Methods , Wiley, Chichester, U. K. 1991. |
[21] | D. Z. Zheng, Linear System Theory, 2$^nd$ edition, Tsinghua University Press, Beijing, 2002. Google Scholar |
[22] |
J. C. Zúñiga Anaya, On diagonalizable quadratic eigenvalue problems , Note#2. Technical Note, March 2009. Google Scholar |
[23] |
J. C. Zúñiga Anaya,
Diagonalization of quadratic matrix polynomials, System & Control Letters, 59 (2010), 105-113.
doi: 10.1016/j.sysconle.2009.12.005. |
[1] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[2] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[3] |
Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79 |
[4] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]