• Previous Article
    Fault-tolerant control against actuator failures for uncertain singular fractional order systems
  • NACO Home
  • This Issue
  • Next Article
    An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems
doi: 10.3934/naco.2020015

Piecewise quadratic bounding functions for finding real roots of polynomials

1. 

Department of the Common Base Natural and Life Sciences, Batna 2 University, Algeria

2. 

Faculty of Mathematics and Computer Science, Batna 2 University, Algeria

3. 

Department of Mathematics, Faculty of Science and Arts, Kirklareli University, 39100, Kirklareli, Turkey

* Corresponding author: Djamel Aaid

Received  June 2019 Revised  September 2019 Published  April 2020

In this paper, our main interest is to create/ construct a new useful and outstanding algorithm to obtain roots of the real polynomial represented by $ f(x) = c_{0}+c_{1}x+...+c_{i}x^{i}+...+c_{n}x^{n} $ where coefficients of the polynomials are real numbers and $ x $ is a real number in the closed interval of $ \mathbb{R} $. Also, our results are supported by numerical examples. Then, a new algorithm is compared with the others (writer classical methods) and this algorithm is more useful than others.

Citation: Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2020015
References:
[1]

D. AaidA. Noui and M. Ouanes, New technique for solving univariate global optimization, Archivum Mathematicum, 53 (2017), 19-33.   Google Scholar

[2]

C. S. AdjimanI. P. Androulakis and C. A. Floudas, A global optimization method, $\alpha$bb, for general twice-differentiable constrained nlpsii. implementation and computational results, Computers & Chemical Engineering, 22 (1998), 1159-1179.   Google Scholar

[3]

X.-D. Chen and W. Ma, A planar quadratic clipping method for computing a root of a polynomial in an interval, Computers & Graphics, 46 (2015), 89-98.   Google Scholar

[4]

X.-D. Chen and W. Ma, Rational cubic clipping with linear complexity for computing roots of polynomials, Applied Mathematics and Computation, 273 (2016), 1051-1058.  doi: 10.1016/j.amc.2015.10.054.  Google Scholar

[5]

X.-D. ChenW. Ma and Y. Ye, A rational cubic clipping method for computing real roots of a polynomial, Computer Aided Geometric Design, 38 (2015), 40-50.  doi: 10.1016/j.cagd.2015.08.002.  Google Scholar

[6]

C. De Boor, Applied mathematical sciences, in A Practical Guide To Splines, Vol. 27, (1978), Spriger-Verlag.  Google Scholar

[7]

A. Djamel, N. Amel, Z. Ahmed, O. Mohand and L. T. H. An, A quadratic branch and bound with alienor method for global optimization, in XII Global Optimization Workshop, (2014), 41–44. Google Scholar

[8]

A. Djamel, N. Amel and O. Mohand, A piecewise quadratic underestimation for global optimization, in The Abstract Book, (2013), 138. Google Scholar

[9]

P. JiangX. Wu and Z. Liu, Polynomials root-finding using a slefe-based clipping method, Communications in Mathematics and Statistics, 4 (2016), 311-322.  doi: 10.1007/s40304-016-0086-1.  Google Scholar

[10]

H. A. Le Thi and M. Ouanes, Convex quadratic underestimation and branch and bound for univariate global optimization with one nonconvex constraint, Rairo-Operations Research, 40 (2006), 285-302.  doi: 10.1051/ro:2006024.  Google Scholar

[11]

H. A. Le Thi, M. Ouanes and A. Zidna, An adapted branch and bound algorithm for approximating real root of a ploynomial, in International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences, Springer, (2008), 182–189. Google Scholar

[12]

H. A. Le Thi, M. Ouanes and A. Zidna, Computing real zeros of a polynomial by branch and bound and branch and reduce algorithms, Yugoslav Journal of Operations Research, 24. doi: 10.2298/YJOR120620004L.  Google Scholar

[13]

M. OuanesH. A. Le ThiT. P. Nguyen and A. Zidna, New quadratic lower bound for multivariate functions in global optimization, Mathematics and Computers in Simulation, 109 (2015), 197-211.  doi: 10.1016/j.matcom.2014.04.013.  Google Scholar

[14]

A. Shpak, Global optimization in one-dimensional case using analytically defined derivatives of objective function, The Computer Science Journal of Moldova, 3 (1995), 168-184.   Google Scholar

show all references

References:
[1]

D. AaidA. Noui and M. Ouanes, New technique for solving univariate global optimization, Archivum Mathematicum, 53 (2017), 19-33.   Google Scholar

[2]

C. S. AdjimanI. P. Androulakis and C. A. Floudas, A global optimization method, $\alpha$bb, for general twice-differentiable constrained nlpsii. implementation and computational results, Computers & Chemical Engineering, 22 (1998), 1159-1179.   Google Scholar

[3]

X.-D. Chen and W. Ma, A planar quadratic clipping method for computing a root of a polynomial in an interval, Computers & Graphics, 46 (2015), 89-98.   Google Scholar

[4]

X.-D. Chen and W. Ma, Rational cubic clipping with linear complexity for computing roots of polynomials, Applied Mathematics and Computation, 273 (2016), 1051-1058.  doi: 10.1016/j.amc.2015.10.054.  Google Scholar

[5]

X.-D. ChenW. Ma and Y. Ye, A rational cubic clipping method for computing real roots of a polynomial, Computer Aided Geometric Design, 38 (2015), 40-50.  doi: 10.1016/j.cagd.2015.08.002.  Google Scholar

[6]

C. De Boor, Applied mathematical sciences, in A Practical Guide To Splines, Vol. 27, (1978), Spriger-Verlag.  Google Scholar

[7]

A. Djamel, N. Amel, Z. Ahmed, O. Mohand and L. T. H. An, A quadratic branch and bound with alienor method for global optimization, in XII Global Optimization Workshop, (2014), 41–44. Google Scholar

[8]

A. Djamel, N. Amel and O. Mohand, A piecewise quadratic underestimation for global optimization, in The Abstract Book, (2013), 138. Google Scholar

[9]

P. JiangX. Wu and Z. Liu, Polynomials root-finding using a slefe-based clipping method, Communications in Mathematics and Statistics, 4 (2016), 311-322.  doi: 10.1007/s40304-016-0086-1.  Google Scholar

[10]

H. A. Le Thi and M. Ouanes, Convex quadratic underestimation and branch and bound for univariate global optimization with one nonconvex constraint, Rairo-Operations Research, 40 (2006), 285-302.  doi: 10.1051/ro:2006024.  Google Scholar

[11]

H. A. Le Thi, M. Ouanes and A. Zidna, An adapted branch and bound algorithm for approximating real root of a ploynomial, in International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences, Springer, (2008), 182–189. Google Scholar

[12]

H. A. Le Thi, M. Ouanes and A. Zidna, Computing real zeros of a polynomial by branch and bound and branch and reduce algorithms, Yugoslav Journal of Operations Research, 24. doi: 10.2298/YJOR120620004L.  Google Scholar

[13]

M. OuanesH. A. Le ThiT. P. Nguyen and A. Zidna, New quadratic lower bound for multivariate functions in global optimization, Mathematics and Computers in Simulation, 109 (2015), 197-211.  doi: 10.1016/j.matcom.2014.04.013.  Google Scholar

[14]

A. Shpak, Global optimization in one-dimensional case using analytically defined derivatives of objective function, The Computer Science Journal of Moldova, 3 (1995), 168-184.   Google Scholar

Figure 1.  The underestimator in ($ BB $) and ($ BR $)
Figure 2.  The underestimator in our method ($ BBR $)
Figure 3.  Tightness of our underestimator $ p(x) $ than the $ q(x) $ used in the classical methods ($ BB $) and ($ BR $)
Table 1.  Numerical results of Example 1
Zeros of polynom Zeros found with BR Zeros found with BB Zeros found with BBR
0.100000000 0.100000000 0.100000000 0.100000000
0.200000000 0.199999999 0.199999999 0.199999999
0.300000000 0.300000000 0.299999999 0.300000000
0.400000000 0.400000000 0.400000000 0.400000000
0.500000000 0.500000000 0.500000000 0.500000000
0.600000000 0.600000000 0.600000000 0.600000000
0.700000000 0.700000000 0.700000000 0.700000000
0.800000000 0.800000000 0.800000000 0.800000000
0.900000000 0.899999999 0.899999999 0.900000000
Relative Error 0.000000002 0.000000003 0.000000001
number of iterations 25 22 06
Time (second) 0.082000000 0.010000000 0.000000000
Zeros of polynom Zeros found with BR Zeros found with BB Zeros found with BBR
0.100000000 0.100000000 0.100000000 0.100000000
0.200000000 0.199999999 0.199999999 0.199999999
0.300000000 0.300000000 0.299999999 0.300000000
0.400000000 0.400000000 0.400000000 0.400000000
0.500000000 0.500000000 0.500000000 0.500000000
0.600000000 0.600000000 0.600000000 0.600000000
0.700000000 0.700000000 0.700000000 0.700000000
0.800000000 0.800000000 0.800000000 0.800000000
0.900000000 0.899999999 0.899999999 0.900000000
Relative Error 0.000000002 0.000000003 0.000000001
number of iterations 25 22 06
Time (second) 0.082000000 0.010000000 0.000000000
Table 2.  Numerical results of Example 2
Zeros of polynom Zeros found with BR Zeros found with BB Zeros found with BBR
0.020600000 0.020599999 0.020600000 0.020600000
0.056600000 0.056600000 0.056600000 0.056600000
0.079900000 0.079900000 0.079899999 0.079899999
0.210000000 0.210000000 0.209999999 0.210000000
0.397300000 0.397300000 0.397299999 0.397300000
0.446600000 0.446599999 0.446600000 0.446599999
0.577600000 0.577600000 0.577599999 0.577600000
0.955100000 0.955100000 0.955099999 0.955100000
0.979100000 0.979100000 0.979099999 0.979100000
0.983500000 0.983499999 0.983500000 0.983500000
Relative Error 0.000000003 0.000000006 0.000000002
number of iterations 27 32 12
Time (second) 0.076100000 0.052000000 0.016000000
Zeros of polynom Zeros found with BR Zeros found with BB Zeros found with BBR
0.020600000 0.020599999 0.020600000 0.020600000
0.056600000 0.056600000 0.056600000 0.056600000
0.079900000 0.079900000 0.079899999 0.079899999
0.210000000 0.210000000 0.209999999 0.210000000
0.397300000 0.397300000 0.397299999 0.397300000
0.446600000 0.446599999 0.446600000 0.446599999
0.577600000 0.577600000 0.577599999 0.577600000
0.955100000 0.955100000 0.955099999 0.955100000
0.979100000 0.979100000 0.979099999 0.979100000
0.983500000 0.983499999 0.983500000 0.983500000
Relative Error 0.000000003 0.000000006 0.000000002
number of iterations 27 32 12
Time (second) 0.076100000 0.052000000 0.016000000
Table 3.  Numerical results of Example 3
Zeros of polynom Zeros found with BR Zeros found with BB Zeros found with BBR
0.500000000 0.499999999 0.500000000 0.500000000
0.250000000 0.249999999 0.249999999 0.250000000
0.125000000 0.124999999 0.125000000 0.124999999
0.062500000 0.062500000 0.062499999 0.062500000
0.031250000 0.031249999 0.031250000 0.031249999
0.015625000 0.015625000 0.015624999 0.015624999
0.007812500 0.007812500 0.007812500 0.007812500
0.003906250 0.003906250 0.003906250 0.003906250
Relative Error 0.000000004 0.000000003 0.000000003
number of iterations 36 27 11
Time (second) 0.096200000 0.027300000 0.036100000
Zeros of polynom Zeros found with BR Zeros found with BB Zeros found with BBR
0.500000000 0.499999999 0.500000000 0.500000000
0.250000000 0.249999999 0.249999999 0.250000000
0.125000000 0.124999999 0.125000000 0.124999999
0.062500000 0.062500000 0.062499999 0.062500000
0.031250000 0.031249999 0.031250000 0.031249999
0.015625000 0.015625000 0.015624999 0.015624999
0.007812500 0.007812500 0.007812500 0.007812500
0.003906250 0.003906250 0.003906250 0.003906250
Relative Error 0.000000004 0.000000003 0.000000003
number of iterations 36 27 11
Time (second) 0.096200000 0.027300000 0.036100000
Table 4.  Numerical results of Example 4
Zeros of polynom Zeros found with BR Zeros found with BB Zeros found with BBR
0.137793470 0.137793487 0.137793487 0.137793486
0.729454549 0.729454566 0.729454566 0.729454565
1.808342901 1.808342880 1.808342880 1.808342881
3.401433697 3.401433705 3.401433705 3.401433705
5.552496140 5.552496161 5.552496160 5.552496160
8.330152746 8.330152734 8.330152735 8.330152735
11.843785837 11.843785821 11.843785821 11.843785821
16.279257831 16.279257837 16.279257837 16.279257837
21.996585811 21.996585793 21.996585792 21.996585792
29.920697012 29.920697000 29.920697001 29.920697002
Relative Error 0.000000001 0.000000001 0.000000001
number of iterations 23 13 07
Time (second) 0.001200000 0.020000000 0.000000000
Zeros of polynom Zeros found with BR Zeros found with BB Zeros found with BBR
0.137793470 0.137793487 0.137793487 0.137793486
0.729454549 0.729454566 0.729454566 0.729454565
1.808342901 1.808342880 1.808342880 1.808342881
3.401433697 3.401433705 3.401433705 3.401433705
5.552496140 5.552496161 5.552496160 5.552496160
8.330152746 8.330152734 8.330152735 8.330152735
11.843785837 11.843785821 11.843785821 11.843785821
16.279257831 16.279257837 16.279257837 16.279257837
21.996585811 21.996585793 21.996585792 21.996585792
29.920697012 29.920697000 29.920697001 29.920697002
Relative Error 0.000000001 0.000000001 0.000000001
number of iterations 23 13 07
Time (second) 0.001200000 0.020000000 0.000000000
[1]

Jing Zhou, Zhibin Deng. A low-dimensional SDP relaxation based spatial branch and bound method for nonconvex quadratic programs. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2087-2102. doi: 10.3934/jimo.2019044

[2]

Nguyen Van Thoai. Decomposition branch and bound algorithm for optimization problems over efficient sets. Journal of Industrial & Management Optimization, 2008, 4 (4) : 647-660. doi: 10.3934/jimo.2008.4.647

[3]

Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial & Management Optimization, 2005, 1 (4) : 533-547. doi: 10.3934/jimo.2005.1.533

[4]

Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial & Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177

[5]

Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795

[6]

Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105

[7]

Z.G. Feng, K.L. Teo, Y. Zhao. Branch and bound method for sensor scheduling in discrete time. Journal of Industrial & Management Optimization, 2005, 1 (4) : 499-512. doi: 10.3934/jimo.2005.1.499

[8]

Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082

[9]

Yves Edel, Alexander Pott. A new almost perfect nonlinear function which is not quadratic. Advances in Mathematics of Communications, 2009, 3 (1) : 59-81. doi: 10.3934/amc.2009.3.59

[10]

Anass Belcaid, Mohammed Douimi, Abdelkader Fassi Fihri. Recursive reconstruction of piecewise constant signals by minimization of an energy function. Inverse Problems & Imaging, 2018, 12 (4) : 903-920. doi: 10.3934/ipi.2018038

[11]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[12]

Zhichuan Zhu, Bo Yu, Li Yang. Globally convergent homotopy method for designing piecewise linear deterministic contractual function. Journal of Industrial & Management Optimization, 2014, 10 (3) : 717-741. doi: 10.3934/jimo.2014.10.717

[13]

Jaume Llibre, Yilei Tang. Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1769-1784. doi: 10.3934/dcdsb.2018236

[14]

Eunice Mureithi. Effects of buoyancy on the lower branch modes on a Blasius boundary layer. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 613-622. doi: 10.3934/dcdsb.2007.8.613

[15]

Laurent Imbert, Michael J. Jacobson, Jr., Arthur Schmidt. Fast ideal cubing in imaginary quadratic number and function fields. Advances in Mathematics of Communications, 2010, 4 (2) : 237-260. doi: 10.3934/amc.2010.4.237

[16]

Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091

[17]

Prof. Dr.rer.nat Widodo. Topological entropy of shift function on the sequences space induced by expanding piecewise linear transformations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 191-208. doi: 10.3934/dcds.2002.8.191

[18]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A socp relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019104

[19]

Arezu Zare, Mohammad Keyanpour, Maziar Salahi. On fractional quadratic optimization problem with two quadratic constraints. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 301-315. doi: 10.3934/naco.2020003

[20]

Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial & Management Optimization, 2019, 15 (2) : 909-932. doi: 10.3934/jimo.2018077

 Impact Factor: 

Metrics

  • PDF downloads (57)
  • HTML views (189)
  • Cited by (0)

Other articles
by authors

[Back to Top]