• Previous Article
    Improving whale optimization algorithm for feature selection with a time-varying transfer function
  • NACO Home
  • This Issue
  • Next Article
    On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization
March  2021, 11(1): 75-86. doi: 10.3934/naco.2020016

Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C

Faculty of Exact Sciences and Sciences of Nature and Life, Department of Mathematics and informatics, University of Oum El Bouaghi, 04000, Algeria

* Corresponding author: Sihem Guerarra

Received  June 2019 Revised  September 2019 Published  February 2020

In this paper we derive the extremal ranks and inertias of the matrix $ X+X^{\ast}-P $, with respect to $ X $, where $ P\in\mathbb{C} _{H}^{n\times n} $ is given, $ X $ is a least rank solution to the matrix equation $ AXB = C $, and then give necessary and sufficient conditions for $ X+X^{\ast}\succ P $ $ \left( \geq P\text{, }\prec P\text{, }\leq P\right) $ in the Löwner partial ordering. As consequence, we establish necessary and sufficient conditions for the matrix equation $ AXB = C $ to have a Hermitian Re-positive or Re-negative definite solution.

Citation: Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016
References:
[1]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2$^{\rm nd}$ ed., Springer, 2003.  Google Scholar

[2]

S. L. Cambell and C. D. Meyer, Generalized Inverse of Linear Transformations, SIAM, 2008. doi: 10.1137/1.9780898719048.ch0.  Google Scholar

[3]

J. Groβ, Nonnegative-definite and positive definite solutions to the matrix equation $AXA^{\ast} = B$-revisited, Linear Algebra Appl., 321 (2000), 123-129.  doi: 10.1016/S0024-3795(00)00033-1.  Google Scholar

[4]

S. Guerarra and S. Guedjiba, Common least-rank solution of matrix equations $A_{1}X_{1}B_{1} = C_{1}$ and $A_{2}X_{2} B_{2} = C_{2}$ with applications, Facta Universitatis (Niš). Ser. Math. Inform., 29 (2014), 313–323.  Google Scholar

[5]

S. Guerarra and S. Guedjiba, Common Hermitian least-rank solution of matrix equations $A_{1}XA_{1}^{\ast} = B_{1}$ and $A_{2}XA_{2}^{\ast} = B_{2}$ subject to inequality restrictions, Facta Universitatis (Niš). Ser. Math. Inform., 30 (2015), 539–554.  Google Scholar

[6]

S. Guerarra, Positive and negative definite submatrices in an Hermitian least rank solution of the matrix equation, Numer. Algebra, Contr. & Optim., 9 (2019), 15-22.   Google Scholar

[7]

C. G. Khatri and S. K. Mitra, Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 31 (1976), 579-585.  doi: 10.1137/0131050.  Google Scholar

[8]

Y. Liu, Ranks of least squares solutions of the matrix equation $AXB = C$, Comput. Mathe. Applications, 55 (2008), 1270-1278.  doi: 10.1016/j.camwa.2007.06.023.  Google Scholar

[9]

R. Penrose, A generalized inverse for matrices, Proc. Camb. Phil. Soc., 52 (1955), 406-413.   Google Scholar

[10]

P. S. Stanimirović, G-inverses and canonical forms, Facta Universitatis (Niš). Ser. Math. Inform., 15 (2000), 1–14.  Google Scholar

[11]

Y. Tian, Rank Equalities Related to Generalized Inverses of Matrices and Their Applications, Master Thesis, Montreal, Quebec, Canada, 2000. Google Scholar

[12]

Y. Tian, The maximal and minimal ranks of some expressions of generalized inverses of matrices, Southeast Asian Bull. Math., 25 (2002), 745-755.  doi: 10.1007/s100120200015.  Google Scholar

[13]

Y. Tian and S. Cheng, The maximal and minimal ranks of $A-BXC$ with applications, New York J. Math., 9 (2003), 345-362.   Google Scholar

[14]

Y. Tian, Equalities and inequalities for inertias of Hermitian matrices with applications, Linear Algebra Appl., 433 (2010), 263-296.  doi: 10.1016/j.laa.2010.02.018.  Google Scholar

[15]

Y. Tian, Maximization and minimization of the rank and inertias of the Hermitian matrix expression $A-BX-\left(BX\right) ^{\ast}$ with applications, Linear Algebra Appl., 434 (2011), 2109-2139.  doi: 10.1016/j.laa.2010.12.010.  Google Scholar

[16]

Y. Tian and H. Wang, Relations between least squares and least rank solution of the matrix equations $AXB=C$, Appl. Math. Comput., 219 (2013), 10293-10301.  doi: 10.1016/j.amc.2013.03.137.  Google Scholar

[17]

X. Zhang, Hermitian nonnegative-definite and positive-definite solutions of the matrix equation $AXB=C$, Appl. Math. E-Notes, 4 (2004), 40-47.   Google Scholar

show all references

References:
[1]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2$^{\rm nd}$ ed., Springer, 2003.  Google Scholar

[2]

S. L. Cambell and C. D. Meyer, Generalized Inverse of Linear Transformations, SIAM, 2008. doi: 10.1137/1.9780898719048.ch0.  Google Scholar

[3]

J. Groβ, Nonnegative-definite and positive definite solutions to the matrix equation $AXA^{\ast} = B$-revisited, Linear Algebra Appl., 321 (2000), 123-129.  doi: 10.1016/S0024-3795(00)00033-1.  Google Scholar

[4]

S. Guerarra and S. Guedjiba, Common least-rank solution of matrix equations $A_{1}X_{1}B_{1} = C_{1}$ and $A_{2}X_{2} B_{2} = C_{2}$ with applications, Facta Universitatis (Niš). Ser. Math. Inform., 29 (2014), 313–323.  Google Scholar

[5]

S. Guerarra and S. Guedjiba, Common Hermitian least-rank solution of matrix equations $A_{1}XA_{1}^{\ast} = B_{1}$ and $A_{2}XA_{2}^{\ast} = B_{2}$ subject to inequality restrictions, Facta Universitatis (Niš). Ser. Math. Inform., 30 (2015), 539–554.  Google Scholar

[6]

S. Guerarra, Positive and negative definite submatrices in an Hermitian least rank solution of the matrix equation, Numer. Algebra, Contr. & Optim., 9 (2019), 15-22.   Google Scholar

[7]

C. G. Khatri and S. K. Mitra, Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 31 (1976), 579-585.  doi: 10.1137/0131050.  Google Scholar

[8]

Y. Liu, Ranks of least squares solutions of the matrix equation $AXB = C$, Comput. Mathe. Applications, 55 (2008), 1270-1278.  doi: 10.1016/j.camwa.2007.06.023.  Google Scholar

[9]

R. Penrose, A generalized inverse for matrices, Proc. Camb. Phil. Soc., 52 (1955), 406-413.   Google Scholar

[10]

P. S. Stanimirović, G-inverses and canonical forms, Facta Universitatis (Niš). Ser. Math. Inform., 15 (2000), 1–14.  Google Scholar

[11]

Y. Tian, Rank Equalities Related to Generalized Inverses of Matrices and Their Applications, Master Thesis, Montreal, Quebec, Canada, 2000. Google Scholar

[12]

Y. Tian, The maximal and minimal ranks of some expressions of generalized inverses of matrices, Southeast Asian Bull. Math., 25 (2002), 745-755.  doi: 10.1007/s100120200015.  Google Scholar

[13]

Y. Tian and S. Cheng, The maximal and minimal ranks of $A-BXC$ with applications, New York J. Math., 9 (2003), 345-362.   Google Scholar

[14]

Y. Tian, Equalities and inequalities for inertias of Hermitian matrices with applications, Linear Algebra Appl., 433 (2010), 263-296.  doi: 10.1016/j.laa.2010.02.018.  Google Scholar

[15]

Y. Tian, Maximization and minimization of the rank and inertias of the Hermitian matrix expression $A-BX-\left(BX\right) ^{\ast}$ with applications, Linear Algebra Appl., 434 (2011), 2109-2139.  doi: 10.1016/j.laa.2010.12.010.  Google Scholar

[16]

Y. Tian and H. Wang, Relations between least squares and least rank solution of the matrix equations $AXB=C$, Appl. Math. Comput., 219 (2013), 10293-10301.  doi: 10.1016/j.amc.2013.03.137.  Google Scholar

[17]

X. Zhang, Hermitian nonnegative-definite and positive-definite solutions of the matrix equation $AXB=C$, Appl. Math. E-Notes, 4 (2004), 40-47.   Google Scholar

[1]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[2]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, 2021, 15 (3) : 519-537. doi: 10.3934/ipi.2021003

[3]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[4]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[5]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[6]

Fei Liu, Xiaokai Liu, Fang Wang. On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021057

[7]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[8]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[9]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[10]

Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021098

[11]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[12]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[13]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[14]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[15]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[16]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[17]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[18]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[19]

Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021005

[20]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

 Impact Factor: 

Metrics

  • PDF downloads (148)
  • HTML views (499)
  • Cited by (0)

Other articles
by authors

[Back to Top]