• Previous Article
    Numerical simulations of a rolling ball robot actuated by internal point masses
  • NACO Home
  • This Issue
  • Next Article
    Neuro-fuzzy active control optimized by Tug of war optimization method for seismically excited benchmark highway bridge
doi: 10.3934/naco.2020016

Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C

Faculty of Exact Sciences and Sciences of Nature and Life, Department of Mathematics and informatics, University of Oum El Bouaghi, 04000, Algeria

* Corresponding author: Sihem Guerarra

Received  June 2019 Revised  September 2019 Published  February 2020

In this paper we derive the extremal ranks and inertias of the matrix $ X+X^{\ast}-P $, with respect to $ X $, where $ P\in\mathbb{C} _{H}^{n\times n} $ is given, $ X $ is a least rank solution to the matrix equation $ AXB = C $, and then give necessary and sufficient conditions for $ X+X^{\ast}\succ P $ $ \left( \geq P\text{, }\prec P\text{, }\leq P\right) $ in the Löwner partial ordering. As consequence, we establish necessary and sufficient conditions for the matrix equation $ AXB = C $ to have a Hermitian Re-positive or Re-negative definite solution.

Citation: Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2020016
References:
[1]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2$^{\rm nd}$ ed., Springer, 2003.  Google Scholar

[2]

S. L. Cambell and C. D. Meyer, Generalized Inverse of Linear Transformations, SIAM, 2008. doi: 10.1137/1.9780898719048.ch0.  Google Scholar

[3]

J. Groβ, Nonnegative-definite and positive definite solutions to the matrix equation $AXA^{\ast} = B$-revisited, Linear Algebra Appl., 321 (2000), 123-129.  doi: 10.1016/S0024-3795(00)00033-1.  Google Scholar

[4]

S. Guerarra and S. Guedjiba, Common least-rank solution of matrix equations $A_{1}X_{1}B_{1} = C_{1}$ and $A_{2}X_{2} B_{2} = C_{2}$ with applications, Facta Universitatis (Niš). Ser. Math. Inform., 29 (2014), 313–323.  Google Scholar

[5]

S. Guerarra and S. Guedjiba, Common Hermitian least-rank solution of matrix equations $A_{1}XA_{1}^{\ast} = B_{1}$ and $A_{2}XA_{2}^{\ast} = B_{2}$ subject to inequality restrictions, Facta Universitatis (Niš). Ser. Math. Inform., 30 (2015), 539–554.  Google Scholar

[6]

S. Guerarra, Positive and negative definite submatrices in an Hermitian least rank solution of the matrix equation, Numer. Algebra, Contr. & Optim., 9 (2019), 15-22.   Google Scholar

[7]

C. G. Khatri and S. K. Mitra, Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 31 (1976), 579-585.  doi: 10.1137/0131050.  Google Scholar

[8]

Y. Liu, Ranks of least squares solutions of the matrix equation $AXB = C$, Comput. Mathe. Applications, 55 (2008), 1270-1278.  doi: 10.1016/j.camwa.2007.06.023.  Google Scholar

[9]

R. Penrose, A generalized inverse for matrices, Proc. Camb. Phil. Soc., 52 (1955), 406-413.   Google Scholar

[10]

P. S. Stanimirović, G-inverses and canonical forms, Facta Universitatis (Niš). Ser. Math. Inform., 15 (2000), 1–14.  Google Scholar

[11]

Y. Tian, Rank Equalities Related to Generalized Inverses of Matrices and Their Applications, Master Thesis, Montreal, Quebec, Canada, 2000. Google Scholar

[12]

Y. Tian, The maximal and minimal ranks of some expressions of generalized inverses of matrices, Southeast Asian Bull. Math., 25 (2002), 745-755.  doi: 10.1007/s100120200015.  Google Scholar

[13]

Y. Tian and S. Cheng, The maximal and minimal ranks of $A-BXC$ with applications, New York J. Math., 9 (2003), 345-362.   Google Scholar

[14]

Y. Tian, Equalities and inequalities for inertias of Hermitian matrices with applications, Linear Algebra Appl., 433 (2010), 263-296.  doi: 10.1016/j.laa.2010.02.018.  Google Scholar

[15]

Y. Tian, Maximization and minimization of the rank and inertias of the Hermitian matrix expression $A-BX-\left(BX\right) ^{\ast}$ with applications, Linear Algebra Appl., 434 (2011), 2109-2139.  doi: 10.1016/j.laa.2010.12.010.  Google Scholar

[16]

Y. Tian and H. Wang, Relations between least squares and least rank solution of the matrix equations $AXB=C$, Appl. Math. Comput., 219 (2013), 10293-10301.  doi: 10.1016/j.amc.2013.03.137.  Google Scholar

[17]

X. Zhang, Hermitian nonnegative-definite and positive-definite solutions of the matrix equation $AXB=C$, Appl. Math. E-Notes, 4 (2004), 40-47.   Google Scholar

show all references

References:
[1]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2$^{\rm nd}$ ed., Springer, 2003.  Google Scholar

[2]

S. L. Cambell and C. D. Meyer, Generalized Inverse of Linear Transformations, SIAM, 2008. doi: 10.1137/1.9780898719048.ch0.  Google Scholar

[3]

J. Groβ, Nonnegative-definite and positive definite solutions to the matrix equation $AXA^{\ast} = B$-revisited, Linear Algebra Appl., 321 (2000), 123-129.  doi: 10.1016/S0024-3795(00)00033-1.  Google Scholar

[4]

S. Guerarra and S. Guedjiba, Common least-rank solution of matrix equations $A_{1}X_{1}B_{1} = C_{1}$ and $A_{2}X_{2} B_{2} = C_{2}$ with applications, Facta Universitatis (Niš). Ser. Math. Inform., 29 (2014), 313–323.  Google Scholar

[5]

S. Guerarra and S. Guedjiba, Common Hermitian least-rank solution of matrix equations $A_{1}XA_{1}^{\ast} = B_{1}$ and $A_{2}XA_{2}^{\ast} = B_{2}$ subject to inequality restrictions, Facta Universitatis (Niš). Ser. Math. Inform., 30 (2015), 539–554.  Google Scholar

[6]

S. Guerarra, Positive and negative definite submatrices in an Hermitian least rank solution of the matrix equation, Numer. Algebra, Contr. & Optim., 9 (2019), 15-22.   Google Scholar

[7]

C. G. Khatri and S. K. Mitra, Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 31 (1976), 579-585.  doi: 10.1137/0131050.  Google Scholar

[8]

Y. Liu, Ranks of least squares solutions of the matrix equation $AXB = C$, Comput. Mathe. Applications, 55 (2008), 1270-1278.  doi: 10.1016/j.camwa.2007.06.023.  Google Scholar

[9]

R. Penrose, A generalized inverse for matrices, Proc. Camb. Phil. Soc., 52 (1955), 406-413.   Google Scholar

[10]

P. S. Stanimirović, G-inverses and canonical forms, Facta Universitatis (Niš). Ser. Math. Inform., 15 (2000), 1–14.  Google Scholar

[11]

Y. Tian, Rank Equalities Related to Generalized Inverses of Matrices and Their Applications, Master Thesis, Montreal, Quebec, Canada, 2000. Google Scholar

[12]

Y. Tian, The maximal and minimal ranks of some expressions of generalized inverses of matrices, Southeast Asian Bull. Math., 25 (2002), 745-755.  doi: 10.1007/s100120200015.  Google Scholar

[13]

Y. Tian and S. Cheng, The maximal and minimal ranks of $A-BXC$ with applications, New York J. Math., 9 (2003), 345-362.   Google Scholar

[14]

Y. Tian, Equalities and inequalities for inertias of Hermitian matrices with applications, Linear Algebra Appl., 433 (2010), 263-296.  doi: 10.1016/j.laa.2010.02.018.  Google Scholar

[15]

Y. Tian, Maximization and minimization of the rank and inertias of the Hermitian matrix expression $A-BX-\left(BX\right) ^{\ast}$ with applications, Linear Algebra Appl., 434 (2011), 2109-2139.  doi: 10.1016/j.laa.2010.12.010.  Google Scholar

[16]

Y. Tian and H. Wang, Relations between least squares and least rank solution of the matrix equations $AXB=C$, Appl. Math. Comput., 219 (2013), 10293-10301.  doi: 10.1016/j.amc.2013.03.137.  Google Scholar

[17]

X. Zhang, Hermitian nonnegative-definite and positive-definite solutions of the matrix equation $AXB=C$, Appl. Math. E-Notes, 4 (2004), 40-47.   Google Scholar

[1]

Sihem Guerarra. Positive and negative definite submatrices in an Hermitian least rank solution of the matrix equation AXA*=B. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 15-22. doi: 10.3934/naco.2019002

[2]

Yun Cai, Song Li. Convergence and stability of iteratively reweighted least squares for low-rank matrix recovery. Inverse Problems & Imaging, 2017, 11 (4) : 643-661. doi: 10.3934/ipi.2017030

[3]

Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial & Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171

[4]

Relinde Jurrius, Ruud Pellikaan. On defining generalized rank weights. Advances in Mathematics of Communications, 2017, 11 (1) : 225-235. doi: 10.3934/amc.2017014

[5]

Ke Wei, Jian-Feng Cai, Tony F. Chan, Shingyu Leung. Guarantees of riemannian optimization for low rank matrix completion. Inverse Problems & Imaging, 2020, 14 (2) : 233-265. doi: 10.3934/ipi.2020011

[6]

Yitong Guo, Bingo Wing-Kuen Ling. Principal component analysis with drop rank covariance matrix. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020072

[7]

Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015

[8]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[9]

Yangyang Xu, Ruru Hao, Wotao Yin, Zhixun Su. Parallel matrix factorization for low-rank tensor completion. Inverse Problems & Imaging, 2015, 9 (2) : 601-624. doi: 10.3934/ipi.2015.9.601

[10]

Yongge Tian. A survey on rank and inertia optimization problems of the matrix-valued function $A + BXB^{*}$. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 289-326. doi: 10.3934/naco.2015.5.289

[11]

Xianchao Xiu, Lingchen Kong. Rank-one and sparse matrix decomposition for dynamic MRI. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 127-134. doi: 10.3934/naco.2015.5.127

[12]

H. D. Scolnik, N. E. Echebest, M. T. Guardarucci. Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 175-191. doi: 10.3934/jimo.2009.5.175

[13]

Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018

[14]

Ngoc Minh Trang Vu, Laurent Lefèvre. Finite rank distributed control for the resistive diffusion equation using damping assignment. Evolution Equations & Control Theory, 2015, 4 (2) : 205-220. doi: 10.3934/eect.2015.4.205

[15]

Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741

[16]

Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055

[17]

Mariantonia Cotronei, Tomas Sauer. Full rank filters and polynomial reproduction. Communications on Pure & Applied Analysis, 2007, 6 (3) : 667-687. doi: 10.3934/cpaa.2007.6.667

[18]

Hubert L. Bray, Marcus A. Khuri. A Jang equation approach to the Penrose inequality. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 741-766. doi: 10.3934/dcds.2010.27.741

[19]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic & Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[20]

Zhouchen Lin. A review on low-rank models in data analysis. Big Data & Information Analytics, 2016, 1 (2&3) : 139-161. doi: 10.3934/bdia.2016001

 Impact Factor: 

Article outline

[Back to Top]