
-
Previous Article
A PID control method based on optimal control strategy
- NACO Home
- This Issue
-
Next Article
Improving whale optimization algorithm for feature selection with a time-varying transfer function
A density matrix approach to the convergence of the self-consistent field iteration
1. | Lindstedtsvägen 25, Department of Mathematics, SeRC - Swedish e-Science research center, Royal Institute of Technology, SE-11428 Stockholm, Sweden |
2. | Division of Scientific Computing, Department of Information Technology, , Uppsala University, Box 337, SE-75105 Uppsala, Sweden |
In this paper, we present a local convergence analysis of the self-consistent field (SCF) iteration using the density matrix as the state of a fixed-point iteration. Conditions for local convergence are formulated in terms of the spectral radius of the Jacobian of a fixed-point map. The relationship between convergence and certain properties of the problem is explored by deriving upper bounds expressed in terms of higher gaps. This gives more information regarding how the gaps between eigenvalues of the problem affect the convergence, and hence these bounds are more insightful on the convergence behaviour than standard convergence results. We also provide a detailed analysis to describe the difference between the bounds and the exact convergence factor for an illustrative example. Finally we present numerical examples and compare the exact value of the convergence factor with the observed behaviour of SCF, along with our new bounds and the characterization using the higher gaps. We provide heuristic convergence factor estimates in situations where the bounds fail to well capture the convergence.
References:
[1] |
Z. Bai, D. Lu and B. Vandereycken, Robust Rayleigh quotient minimization and nonlinear eigenvalue problems, , SIAM J. Sci. Comput., 40 (2018), A3495–A3522.
doi: 10.1137/18M1167681. |
[2] |
D. R. Bowler and T. Mizayaki, $\mathcal{O}$($n$) methods in electronic structure calculations, , Rep. Prog. Phys., 75 (2012), 036503, http://iopscience.iop.org/article/10.1088/0034-4885/75/3/036503.
doi: 10.1088/0034-4885/75/3/036503. |
[3] |
Y. Cai, L.-H. Zhang, Z. Bai and R.-C. Li,
On an eigenvector-dependent nonlinear eigenvalue problem, SIAM J. Matrix Anal. Appl., 39 (2018), 1360-1382.
doi: 10.1137/17M115935X. |
[4] |
E. Cancés and C. L. Bris,
On the convergence of SCF algorithms for the Hartree-Fock equations, M2AN, Math. Model. Numer. Anal., 34 (2000), 749-774.
doi: 10.1051/m2an:2000102. |
[5] |
T. Helgaker, P. Jorgensen and J. Olsen, Molecular Electronic-Structure Theory, John Wiley and Sons, 2000.
doi: 10.1002/9781119019572. |
[6] |
H. V. Henderson and S. R. Searle,
Vec and vech operators for matrices, with some uses in jacobians and multivariate statistics, Can J. Stat., 7 (1979), 65-81.
doi: 10.2307/3315017. |
[7] |
N. Higham, Functions of Matrices, Society for Industrial and Applied Mathematics, 2008.
doi: 10.1137/1.9780898717778. |
[8] |
T. Kato, Perturbation Theory for Linear Operators, 2nd edition, Springer-Verlag, 1995.
doi: 10.1007/978-3-642-66282-9. |
[9] |
A. Levitt,
Convergence of gradient-based algorithms for the Hartree-Fock equations, ESAIM: Math. Model. Numer. Anal., 46 (2012), 1321-1336.
doi: 10.1051/m2an/2012008. |
[10] |
X. Liu, X. Wang, Z. Wen and Y. Yuan,
On the convergence of the self-consistent field iteration in Kohn-Sham density functional theory, SIAM J. Matrix Anal. Appl., 35 (2014), 546-558.
doi: 10.1137/130911032. |
[11] |
X. Liu, Z. Wen, X. Wang, M. Ulbrich and Y. Yuan,
On the analysis of the discretized Kohn-Sham density functional theory, SIAM J. Numer. Anal., 53 (2015), 1758-1785.
doi: 10.1137/140957962. |
[12] |
C. E. McCulloch,
Symmetric matrix derivatives with applications, J. Amer. Stat. Assoc., 77 (1982), 679-682.
doi: 10.2307/2287736. |
[13] |
A. Messiah, Quantum Mechanics, Dover Publications, 1999. Google Scholar |
[14] |
T. T. Ngo, M. Bellalij and Y. Saad,
The trace ratio optimization problem for dimensionality reduction, SIAM J. Matrix Anal. Appl., 31 (2010), 2950-2971.
doi: 10.1137/090776603. |
[15] |
P. Pulay,
Convergence acceleration of iterative sequences. The case of scf iteration, Chem. Phys. Lett., 73 (1979), 393-398.
doi: 10.1016/0009-2614(80)80396-4. |
[16] |
T. Rohwedder and R. Schneider,
An analysis for the DIIS acceleration method used in quantum chemistry calculations, J. Math. Chem., 49 (2011), 1889-1914.
doi: 10.1007/s10910-011-9863-y. |
[17] |
E. Rudberg, Quantum Chemistry for Large Scale Systems, PhD thesis, Royal Institute of Technology, 2007, Available at http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4561. Google Scholar |
[18] |
E. Rudberg, E. H. Rubensson and P. Saƚek,
Kohn-Sham density functional theory electronic structure calculations with linearly scaling computational time and memory usage, J. Chem. Theory Comput., 7 (2011), 340-350.
doi: 10.1021/ct100611z. |
[19] |
E. Rudberg, E. H. Rubensson, P. Saƚek and A. Kruchinina,
Ergo: An open-source program for linear-scaling electronic structure calculations, SoftwareX, 7 (2018), 107-111.
doi: 10.1016/j.softx.2018.03.005. |
[20] |
Y. Saad, J. T. Chelikowsky and S. M. Shontz,
Numerical methods for electronic structure calculations of materials, SIAM Rev., 52 (2010), 3-54.
doi: 10.1137/060651653. |
[21] |
R. E. Stanton,
Intrinsic convergence in closed-shell SCF calculations. A general criterion, J. Chem. Phys., 75 (1981), 5416-5422.
doi: 10.1063/1.441942. |
[22] |
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Publications, 1996. Google Scholar |
[23] |
C. Yang, W. Gao and J. C. Meza,
On the convergence of the self-consistent field iteration for a class of nonlinear eigenvalue problems, SIAM J. Matrix Anal. Appl., 30 (2009), 1773-1788.
doi: 10.1137/080716293. |
[24] |
L.-H. Zhang, L.-Z. Liao and M. K. Ng,
Fast algorithms for the generalized Foley Sammon discriminant analysis, SIAM J. Matrix Anal. Appl., 31 (2010), 1584-1605.
doi: 10.1137/080720863. |
[25] |
L.-H. Zhang, W. H. Yang and L.-Z. Liao,
A note on the trace quotient problem, Opt. Lett., 8 (2014), 1637-1645.
doi: 10.1007/s11590-013-0680-z. |
show all references
References:
[1] |
Z. Bai, D. Lu and B. Vandereycken, Robust Rayleigh quotient minimization and nonlinear eigenvalue problems, , SIAM J. Sci. Comput., 40 (2018), A3495–A3522.
doi: 10.1137/18M1167681. |
[2] |
D. R. Bowler and T. Mizayaki, $\mathcal{O}$($n$) methods in electronic structure calculations, , Rep. Prog. Phys., 75 (2012), 036503, http://iopscience.iop.org/article/10.1088/0034-4885/75/3/036503.
doi: 10.1088/0034-4885/75/3/036503. |
[3] |
Y. Cai, L.-H. Zhang, Z. Bai and R.-C. Li,
On an eigenvector-dependent nonlinear eigenvalue problem, SIAM J. Matrix Anal. Appl., 39 (2018), 1360-1382.
doi: 10.1137/17M115935X. |
[4] |
E. Cancés and C. L. Bris,
On the convergence of SCF algorithms for the Hartree-Fock equations, M2AN, Math. Model. Numer. Anal., 34 (2000), 749-774.
doi: 10.1051/m2an:2000102. |
[5] |
T. Helgaker, P. Jorgensen and J. Olsen, Molecular Electronic-Structure Theory, John Wiley and Sons, 2000.
doi: 10.1002/9781119019572. |
[6] |
H. V. Henderson and S. R. Searle,
Vec and vech operators for matrices, with some uses in jacobians and multivariate statistics, Can J. Stat., 7 (1979), 65-81.
doi: 10.2307/3315017. |
[7] |
N. Higham, Functions of Matrices, Society for Industrial and Applied Mathematics, 2008.
doi: 10.1137/1.9780898717778. |
[8] |
T. Kato, Perturbation Theory for Linear Operators, 2nd edition, Springer-Verlag, 1995.
doi: 10.1007/978-3-642-66282-9. |
[9] |
A. Levitt,
Convergence of gradient-based algorithms for the Hartree-Fock equations, ESAIM: Math. Model. Numer. Anal., 46 (2012), 1321-1336.
doi: 10.1051/m2an/2012008. |
[10] |
X. Liu, X. Wang, Z. Wen and Y. Yuan,
On the convergence of the self-consistent field iteration in Kohn-Sham density functional theory, SIAM J. Matrix Anal. Appl., 35 (2014), 546-558.
doi: 10.1137/130911032. |
[11] |
X. Liu, Z. Wen, X. Wang, M. Ulbrich and Y. Yuan,
On the analysis of the discretized Kohn-Sham density functional theory, SIAM J. Numer. Anal., 53 (2015), 1758-1785.
doi: 10.1137/140957962. |
[12] |
C. E. McCulloch,
Symmetric matrix derivatives with applications, J. Amer. Stat. Assoc., 77 (1982), 679-682.
doi: 10.2307/2287736. |
[13] |
A. Messiah, Quantum Mechanics, Dover Publications, 1999. Google Scholar |
[14] |
T. T. Ngo, M. Bellalij and Y. Saad,
The trace ratio optimization problem for dimensionality reduction, SIAM J. Matrix Anal. Appl., 31 (2010), 2950-2971.
doi: 10.1137/090776603. |
[15] |
P. Pulay,
Convergence acceleration of iterative sequences. The case of scf iteration, Chem. Phys. Lett., 73 (1979), 393-398.
doi: 10.1016/0009-2614(80)80396-4. |
[16] |
T. Rohwedder and R. Schneider,
An analysis for the DIIS acceleration method used in quantum chemistry calculations, J. Math. Chem., 49 (2011), 1889-1914.
doi: 10.1007/s10910-011-9863-y. |
[17] |
E. Rudberg, Quantum Chemistry for Large Scale Systems, PhD thesis, Royal Institute of Technology, 2007, Available at http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4561. Google Scholar |
[18] |
E. Rudberg, E. H. Rubensson and P. Saƚek,
Kohn-Sham density functional theory electronic structure calculations with linearly scaling computational time and memory usage, J. Chem. Theory Comput., 7 (2011), 340-350.
doi: 10.1021/ct100611z. |
[19] |
E. Rudberg, E. H. Rubensson, P. Saƚek and A. Kruchinina,
Ergo: An open-source program for linear-scaling electronic structure calculations, SoftwareX, 7 (2018), 107-111.
doi: 10.1016/j.softx.2018.03.005. |
[20] |
Y. Saad, J. T. Chelikowsky and S. M. Shontz,
Numerical methods for electronic structure calculations of materials, SIAM Rev., 52 (2010), 3-54.
doi: 10.1137/060651653. |
[21] |
R. E. Stanton,
Intrinsic convergence in closed-shell SCF calculations. A general criterion, J. Chem. Phys., 75 (1981), 5416-5422.
doi: 10.1063/1.441942. |
[22] |
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Publications, 1996. Google Scholar |
[23] |
C. Yang, W. Gao and J. C. Meza,
On the convergence of the self-consistent field iteration for a class of nonlinear eigenvalue problems, SIAM J. Matrix Anal. Appl., 30 (2009), 1773-1788.
doi: 10.1137/080716293. |
[24] |
L.-H. Zhang, L.-Z. Liao and M. K. Ng,
Fast algorithms for the generalized Foley Sammon discriminant analysis, SIAM J. Matrix Anal. Appl., 31 (2010), 1584-1605.
doi: 10.1137/080720863. |
[25] |
L.-H. Zhang, W. H. Yang and L.-Z. Liao,
A note on the trace quotient problem, Opt. Lett., 8 (2014), 1637-1645.
doi: 10.1007/s11590-013-0680-z. |




[1] |
Zehui Jia, Xue Gao, Xingju Cai, Deren Han. The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1943-1971. doi: 10.3934/jimo.2020053 |
[2] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[3] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[4] |
Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021014 |
[5] |
Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063 |
[6] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407 |
[7] |
Hong-Yi Miao, Li Wang. Preconditioned inexact Newton-like method for large nonsymmetric eigenvalue problems. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021012 |
[8] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021031 |
[9] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007 |
[10] |
Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021021 |
[11] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446 |
[12] |
Yaonan Ma, Li-Zhi Liao. The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1681-1711. doi: 10.3934/jimo.2020040 |
[13] |
Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021080 |
[14] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[15] |
Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269 |
[16] |
Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243 |
[17] |
Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019 |
[18] |
Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050 |
[19] |
Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021074 |
[20] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]