
-
Previous Article
A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk
- NACO Home
- This Issue
-
Next Article
Numerical simulations of a rolling ball robot actuated by internal point masses
Generalized Nash equilibrium problem based on malfatti's problem
1. | Institute of Mathematics and Digital Technology, Academy of Sciences of Mongolia, Ulaanbaatar, Mongolia |
2. | Center of Mathematics for Applications and Department of Applied Mathematics, National University of Mongolia, Ulaanbaatar, Mongolia |
In this paper we consider non-cooperative game problem based on the Malfatti's problem. This problem is a special case of generalized Nash equilibrium problems with nonconvex shared constraints. Some numerical results are provided.
References:
[1] |
Ma rco Andreatta, An drás Bezdek and Jan P. Boroński, The problem of Malfatti: Two centuries of debate, The Mathematical Intelligencer, 33 (2011), 72-76. Google Scholar |
[2] |
G. Debreu,
A social equilibrium existence theorem, Proceedings of the National Academy of Sciencesof the United States of America, 38 (1952), 886-893.
doi: 10.1073/pnas.38.10.886. |
[3] |
R. Enkhbat,
An algorithm for maximizing a convex function over a simple set, Journal of Global Optimization, 8 (1996), 379-391.
doi: 10.1007/BF02403999. |
[4] |
R. Enkhbat,
Global optimization approach to Malfatti's problem, Journal of Global Optimization, 65 (2016), 3-39.
doi: 10.1007/s10898-015-0372-6. |
[5] |
R. Enkhbat, M. V. Barkova and A. S. Strekalovsky,
Solving Malfatti's high dimensional problem by global optimization, Numerical Algebra, Control and Optimization, 2 (2016), 153-160.
doi: 10.3934/naco.2016005. |
[6] |
F. Facchinei and C. Kanzow,
Generalized Nash equilibrium problems, Annals of Operations Research, 1 (2010), 177-211.
doi: 10.1007/s10479-009-0653-x. |
[7] |
Andreas Fischer, Markus Herrich and Klaus Schonefeld, Generalized Nash equilibrium problems - Recent advances and challenges, Pesquisa Operacional, 3 (2014), 521-558. Google Scholar |
[8] |
M. Fukushima, Restricted generalized Nash equilibria and controlled penalty algorithm, Technical Report, Department of Applied Mathematics and Physics, Kyoto University, 2008-007, July (2008).
doi: 10.1007/s10287-009-0093-8. |
[9] |
H. Gabai and E. Liban, On Goldberg's inequality associated with the Malfatti problem, Math. Mag., 5 (1967). |
[10] |
M. Goldberg,
On the original Malfatti problem, Math. Mag., 5 (1967), 241-247.
|
[11] |
A. Heusinger and C. Kanzow,
Relaxation methods for generalized Nash equilibrium problems with inexact line search, Journal of Optimization Theory and Applications, 1 (2009), 159-183.
doi: 10.1007/s10957-009-9553-0. |
[12] |
K. Kubota and M. Fukushima,
Gap function approach to the generalized Nash equilibrium problem, Journal of Optimization Theory and Applications, 3 (2010), 511-531.
doi: 10.1007/s10957-009-9614-4. |
[13] |
H. Lob and H. W. Richmond,
On the solutions of the Malfatti problem for a triangle, Proc. London Math. Soc., 30 (1930), 287-301.
doi: 10.1112/plms/s2-30.1.287. |
[14] |
G. A. Los, Malfatti's Optimization Problem, Dep. Ukr. NIINTI July 5, [in Russian], 1988. Google Scholar |
[15] |
C. Malfatti, Memoria sopra una problema stereotomico, Memoria di Matematica e di Fisica della Societa ttaliana della Scienze, 1 (1803), 235-244. Google Scholar |
[16] |
A. S. Strekalovsky,
On the global extrema problem, Soviet Math. Doklad, 292 (1987), 1062-1066.
|
[17] |
J.-Y. Wei and Y. Smeers, Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices, Oper. Res., 47 (1999), 102-112. Google Scholar |
[18] |
V. A. Zalgaller, An inequality for acute triangles, Ukr. Geom. Sb., 34 (1991), 10-25. Google Scholar |
[19] |
V. A. Zalgaller and G. A. Los,
The solution of Malfatti's problem, Journal of Mathematical Sciences, 4 (1994), 3163-3177.
doi: 10.1007/BF01249514. |
show all references
References:
[1] |
Ma rco Andreatta, An drás Bezdek and Jan P. Boroński, The problem of Malfatti: Two centuries of debate, The Mathematical Intelligencer, 33 (2011), 72-76. Google Scholar |
[2] |
G. Debreu,
A social equilibrium existence theorem, Proceedings of the National Academy of Sciencesof the United States of America, 38 (1952), 886-893.
doi: 10.1073/pnas.38.10.886. |
[3] |
R. Enkhbat,
An algorithm for maximizing a convex function over a simple set, Journal of Global Optimization, 8 (1996), 379-391.
doi: 10.1007/BF02403999. |
[4] |
R. Enkhbat,
Global optimization approach to Malfatti's problem, Journal of Global Optimization, 65 (2016), 3-39.
doi: 10.1007/s10898-015-0372-6. |
[5] |
R. Enkhbat, M. V. Barkova and A. S. Strekalovsky,
Solving Malfatti's high dimensional problem by global optimization, Numerical Algebra, Control and Optimization, 2 (2016), 153-160.
doi: 10.3934/naco.2016005. |
[6] |
F. Facchinei and C. Kanzow,
Generalized Nash equilibrium problems, Annals of Operations Research, 1 (2010), 177-211.
doi: 10.1007/s10479-009-0653-x. |
[7] |
Andreas Fischer, Markus Herrich and Klaus Schonefeld, Generalized Nash equilibrium problems - Recent advances and challenges, Pesquisa Operacional, 3 (2014), 521-558. Google Scholar |
[8] |
M. Fukushima, Restricted generalized Nash equilibria and controlled penalty algorithm, Technical Report, Department of Applied Mathematics and Physics, Kyoto University, 2008-007, July (2008).
doi: 10.1007/s10287-009-0093-8. |
[9] |
H. Gabai and E. Liban, On Goldberg's inequality associated with the Malfatti problem, Math. Mag., 5 (1967). |
[10] |
M. Goldberg,
On the original Malfatti problem, Math. Mag., 5 (1967), 241-247.
|
[11] |
A. Heusinger and C. Kanzow,
Relaxation methods for generalized Nash equilibrium problems with inexact line search, Journal of Optimization Theory and Applications, 1 (2009), 159-183.
doi: 10.1007/s10957-009-9553-0. |
[12] |
K. Kubota and M. Fukushima,
Gap function approach to the generalized Nash equilibrium problem, Journal of Optimization Theory and Applications, 3 (2010), 511-531.
doi: 10.1007/s10957-009-9614-4. |
[13] |
H. Lob and H. W. Richmond,
On the solutions of the Malfatti problem for a triangle, Proc. London Math. Soc., 30 (1930), 287-301.
doi: 10.1112/plms/s2-30.1.287. |
[14] |
G. A. Los, Malfatti's Optimization Problem, Dep. Ukr. NIINTI July 5, [in Russian], 1988. Google Scholar |
[15] |
C. Malfatti, Memoria sopra una problema stereotomico, Memoria di Matematica e di Fisica della Societa ttaliana della Scienze, 1 (1803), 235-244. Google Scholar |
[16] |
A. S. Strekalovsky,
On the global extrema problem, Soviet Math. Doklad, 292 (1987), 1062-1066.
|
[17] |
J.-Y. Wei and Y. Smeers, Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices, Oper. Res., 47 (1999), 102-112. Google Scholar |
[18] |
V. A. Zalgaller, An inequality for acute triangles, Ukr. Geom. Sb., 34 (1991), 10-25. Google Scholar |
[19] |
V. A. Zalgaller and G. A. Los,
The solution of Malfatti's problem, Journal of Mathematical Sciences, 4 (1994), 3163-3177.
doi: 10.1007/BF01249514. |





[1] |
Chloé Jimenez. A zero sum differential game with correlated informations on the initial position. A case with a continuum of initial positions. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021009 |
[2] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[3] |
Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066 |
[4] |
Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021025 |
[5] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[6] |
Suzete Maria Afonso, Vanessa Ramos, Jaqueline Siqueira. Equilibrium states for non-uniformly hyperbolic systems: Statistical properties and analyticity. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021045 |
[7] |
Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021049 |
[8] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[9] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[10] |
Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1025-1038. doi: 10.3934/cpaa.2021004 |
[11] |
Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021092 |
[12] |
Zhenquan Zhang, Meiling Chen, Jiajun Zhang, Tianshou Zhou. Analysis of non-Markovian effects in generalized birth-death models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3717-3735. doi: 10.3934/dcdsb.2020254 |
[13] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[14] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384 |
[15] |
Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008 |
[16] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[17] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[18] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[19] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[20] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]