
-
Previous Article
A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk
- NACO Home
- This Issue
-
Next Article
Numerical simulations of a rolling ball robot actuated by internal point masses
Generalized Nash equilibrium problem based on malfatti's problem
1. | Institute of Mathematics and Digital Technology, Academy of Sciences of Mongolia, Ulaanbaatar, Mongolia |
2. | Center of Mathematics for Applications and Department of Applied Mathematics, National University of Mongolia, Ulaanbaatar, Mongolia |
In this paper we consider non-cooperative game problem based on the Malfatti's problem. This problem is a special case of generalized Nash equilibrium problems with nonconvex shared constraints. Some numerical results are provided.
References:
[1] |
Ma rco Andreatta, An drás Bezdek and Jan P. Boroński, The problem of Malfatti: Two centuries of debate, The Mathematical Intelligencer, 33 (2011), 72-76. Google Scholar |
[2] |
G. Debreu,
A social equilibrium existence theorem, Proceedings of the National Academy of Sciencesof the United States of America, 38 (1952), 886-893.
doi: 10.1073/pnas.38.10.886. |
[3] |
R. Enkhbat,
An algorithm for maximizing a convex function over a simple set, Journal of Global Optimization, 8 (1996), 379-391.
doi: 10.1007/BF02403999. |
[4] |
R. Enkhbat,
Global optimization approach to Malfatti's problem, Journal of Global Optimization, 65 (2016), 3-39.
doi: 10.1007/s10898-015-0372-6. |
[5] |
R. Enkhbat, M. V. Barkova and A. S. Strekalovsky,
Solving Malfatti's high dimensional problem by global optimization, Numerical Algebra, Control and Optimization, 2 (2016), 153-160.
doi: 10.3934/naco.2016005. |
[6] |
F. Facchinei and C. Kanzow,
Generalized Nash equilibrium problems, Annals of Operations Research, 1 (2010), 177-211.
doi: 10.1007/s10479-009-0653-x. |
[7] |
Andreas Fischer, Markus Herrich and Klaus Schonefeld, Generalized Nash equilibrium problems - Recent advances and challenges, Pesquisa Operacional, 3 (2014), 521-558. Google Scholar |
[8] |
M. Fukushima, Restricted generalized Nash equilibria and controlled penalty algorithm, Technical Report, Department of Applied Mathematics and Physics, Kyoto University, 2008-007, July (2008).
doi: 10.1007/s10287-009-0093-8. |
[9] |
H. Gabai and E. Liban, On Goldberg's inequality associated with the Malfatti problem, Math. Mag., 5 (1967). |
[10] |
M. Goldberg,
On the original Malfatti problem, Math. Mag., 5 (1967), 241-247.
|
[11] |
A. Heusinger and C. Kanzow,
Relaxation methods for generalized Nash equilibrium problems with inexact line search, Journal of Optimization Theory and Applications, 1 (2009), 159-183.
doi: 10.1007/s10957-009-9553-0. |
[12] |
K. Kubota and M. Fukushima,
Gap function approach to the generalized Nash equilibrium problem, Journal of Optimization Theory and Applications, 3 (2010), 511-531.
doi: 10.1007/s10957-009-9614-4. |
[13] |
H. Lob and H. W. Richmond,
On the solutions of the Malfatti problem for a triangle, Proc. London Math. Soc., 30 (1930), 287-301.
doi: 10.1112/plms/s2-30.1.287. |
[14] |
G. A. Los, Malfatti's Optimization Problem, Dep. Ukr. NIINTI July 5, [in Russian], 1988. Google Scholar |
[15] |
C. Malfatti, Memoria sopra una problema stereotomico, Memoria di Matematica e di Fisica della Societa ttaliana della Scienze, 1 (1803), 235-244. Google Scholar |
[16] |
A. S. Strekalovsky,
On the global extrema problem, Soviet Math. Doklad, 292 (1987), 1062-1066.
|
[17] |
J.-Y. Wei and Y. Smeers, Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices, Oper. Res., 47 (1999), 102-112. Google Scholar |
[18] |
V. A. Zalgaller, An inequality for acute triangles, Ukr. Geom. Sb., 34 (1991), 10-25. Google Scholar |
[19] |
V. A. Zalgaller and G. A. Los,
The solution of Malfatti's problem, Journal of Mathematical Sciences, 4 (1994), 3163-3177.
doi: 10.1007/BF01249514. |
show all references
References:
[1] |
Ma rco Andreatta, An drás Bezdek and Jan P. Boroński, The problem of Malfatti: Two centuries of debate, The Mathematical Intelligencer, 33 (2011), 72-76. Google Scholar |
[2] |
G. Debreu,
A social equilibrium existence theorem, Proceedings of the National Academy of Sciencesof the United States of America, 38 (1952), 886-893.
doi: 10.1073/pnas.38.10.886. |
[3] |
R. Enkhbat,
An algorithm for maximizing a convex function over a simple set, Journal of Global Optimization, 8 (1996), 379-391.
doi: 10.1007/BF02403999. |
[4] |
R. Enkhbat,
Global optimization approach to Malfatti's problem, Journal of Global Optimization, 65 (2016), 3-39.
doi: 10.1007/s10898-015-0372-6. |
[5] |
R. Enkhbat, M. V. Barkova and A. S. Strekalovsky,
Solving Malfatti's high dimensional problem by global optimization, Numerical Algebra, Control and Optimization, 2 (2016), 153-160.
doi: 10.3934/naco.2016005. |
[6] |
F. Facchinei and C. Kanzow,
Generalized Nash equilibrium problems, Annals of Operations Research, 1 (2010), 177-211.
doi: 10.1007/s10479-009-0653-x. |
[7] |
Andreas Fischer, Markus Herrich and Klaus Schonefeld, Generalized Nash equilibrium problems - Recent advances and challenges, Pesquisa Operacional, 3 (2014), 521-558. Google Scholar |
[8] |
M. Fukushima, Restricted generalized Nash equilibria and controlled penalty algorithm, Technical Report, Department of Applied Mathematics and Physics, Kyoto University, 2008-007, July (2008).
doi: 10.1007/s10287-009-0093-8. |
[9] |
H. Gabai and E. Liban, On Goldberg's inequality associated with the Malfatti problem, Math. Mag., 5 (1967). |
[10] |
M. Goldberg,
On the original Malfatti problem, Math. Mag., 5 (1967), 241-247.
|
[11] |
A. Heusinger and C. Kanzow,
Relaxation methods for generalized Nash equilibrium problems with inexact line search, Journal of Optimization Theory and Applications, 1 (2009), 159-183.
doi: 10.1007/s10957-009-9553-0. |
[12] |
K. Kubota and M. Fukushima,
Gap function approach to the generalized Nash equilibrium problem, Journal of Optimization Theory and Applications, 3 (2010), 511-531.
doi: 10.1007/s10957-009-9614-4. |
[13] |
H. Lob and H. W. Richmond,
On the solutions of the Malfatti problem for a triangle, Proc. London Math. Soc., 30 (1930), 287-301.
doi: 10.1112/plms/s2-30.1.287. |
[14] |
G. A. Los, Malfatti's Optimization Problem, Dep. Ukr. NIINTI July 5, [in Russian], 1988. Google Scholar |
[15] |
C. Malfatti, Memoria sopra una problema stereotomico, Memoria di Matematica e di Fisica della Societa ttaliana della Scienze, 1 (1803), 235-244. Google Scholar |
[16] |
A. S. Strekalovsky,
On the global extrema problem, Soviet Math. Doklad, 292 (1987), 1062-1066.
|
[17] |
J.-Y. Wei and Y. Smeers, Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices, Oper. Res., 47 (1999), 102-112. Google Scholar |
[18] |
V. A. Zalgaller, An inequality for acute triangles, Ukr. Geom. Sb., 34 (1991), 10-25. Google Scholar |
[19] |
V. A. Zalgaller and G. A. Los,
The solution of Malfatti's problem, Journal of Mathematical Sciences, 4 (1994), 3163-3177.
doi: 10.1007/BF01249514. |





[1] |
Rentsen Enkhbat, Evgeniya A. Finkelstein, Anton S. Anikin, Alexandr Yu. Gornov. Global optimization reduction of generalized Malfatti's problem. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 211-221. doi: 10.3934/naco.2017015 |
[2] |
Jie Xiong, Shuaiqi Zhang, Yi Zhuang. A partially observed non-zero sum differential game of forward-backward stochastic differential equations and its application in finance. Mathematical Control & Related Fields, 2019, 9 (2) : 257-276. doi: 10.3934/mcrf.2019013 |
[3] |
Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1795-1807. doi: 10.3934/jimo.2018123 |
[4] |
Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial & Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27 |
[5] |
Rentsen Enkhbat, M. V. Barkova, A. S. Strekalovsky. Solving Malfatti's high dimensional problem by global optimization. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 153-160. doi: 10.3934/naco.2016005 |
[6] |
Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001 |
[7] |
Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004 |
[8] |
Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091 |
[9] |
Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2012, 8 (1) : 51-65. doi: 10.3934/jimo.2012.8.51 |
[10] |
Moez Kallel, Maher Moakher, Anis Theljani. The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting. Inverse Problems & Imaging, 2015, 9 (3) : 853-874. doi: 10.3934/ipi.2015.9.853 |
[11] |
Asaf Kislev. Compactly supported Hamiltonian loops with a non-zero Calabi invariant. Electronic Research Announcements, 2014, 21: 80-88. doi: 10.3934/era.2014.21.80 |
[12] |
Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225 |
[13] |
Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control & Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010 |
[14] |
Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707 |
[15] |
Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537 |
[16] |
Chloé Jimenez. A zero sum differential game with correlated informations on the initial position. A case with a continuum of initial positions. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021009 |
[17] |
Kyouhei Wakasa. Blow-up of solutions to semilinear wave equations with non-zero initial data. Conference Publications, 2015, 2015 (special) : 1105-1114. doi: 10.3934/proc.2015.1105 |
[18] |
Harald Garcke, Kei Fong Lam. Analysis of a Cahn--Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4277-4308. doi: 10.3934/dcds.2017183 |
[19] |
Delia Ionescu-Kruse. Variational derivation of the Camassa-Holm shallow water equation with non-zero vorticity. Discrete & Continuous Dynamical Systems, 2007, 19 (3) : 531-543. doi: 10.3934/dcds.2007.19.531 |
[20] |
Yongluo Cao, Stefano Luzzatto, Isabel Rios. Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: Horseshoes with internal tangencies. Discrete & Continuous Dynamical Systems, 2006, 15 (1) : 61-71. doi: 10.3934/dcds.2006.15.61 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]