
-
Previous Article
Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach
- NACO Home
- This Issue
-
Next Article
Numerical simulations of a rolling ball robot actuated by internal point masses
Generalized nash equilibrium problem based on malfatti's problem
1. | Institute of Mathematics and Digital Technology, Academy of Sciences of Mongolia, Ulaanbaatar, Mongolia |
2. | Center of Mathematics for Applications and Department of Applied Mathematics, National University of Mongolia, Ulaanbaatar, Mongolia |
In this paper we consider non-cooperative game problem based on the Malfatti's problem. This problem is a special case of generalized Nash equilibrium problems with nonconvex shared constraints. Some numerical results are provided.
References:
[1] |
Ma rco Andreatta, An drás Bezdek and Jan P. Boroński, The problem of Malfatti: Two centuries of debate, The Mathematical Intelligencer, 33 (2011), 72-76. Google Scholar |
[2] |
G. Debreu,
A social equilibrium existence theorem, Proceedings of the National Academy of Sciencesof the United States of America, 38 (1952), 886-893.
doi: 10.1073/pnas.38.10.886. |
[3] |
R. Enkhbat,
An algorithm for maximizing a convex function over a simple set, Journal of Global Optimization, 8 (1996), 379-391.
doi: 10.1007/BF02403999. |
[4] |
R. Enkhbat,
Global optimization approach to Malfatti's problem, Journal of Global Optimization, 65 (2016), 3-39.
doi: 10.1007/s10898-015-0372-6. |
[5] |
R. Enkhbat, M. V. Barkova and A. S. Strekalovsky,
Solving Malfatti's high dimensional problem by global optimization, Numerical Algebra, Control and Optimization, 2 (2016), 153-160.
doi: 10.3934/naco.2016005. |
[6] |
F. Facchinei and C. Kanzow,
Generalized Nash equilibrium problems, Annals of Operations Research, 1 (2010), 177-211.
doi: 10.1007/s10479-009-0653-x. |
[7] |
Andreas Fischer, Markus Herrich and Klaus Schonefeld, Generalized Nash equilibrium problems - Recent advances and challenges, Pesquisa Operacional, 3 (2014), 521-558. Google Scholar |
[8] |
M. Fukushima, Restricted generalized Nash equilibria and controlled penalty algorithm, , Technical Report, Department of Applied Mathematics and Physics, Kyoto University, 2008-007, July (2008).
doi: 10.1007/s10287-009-0093-8. |
[9] |
H. Gabai and E. Liban, On Goldberg's inequality associated with the Malfatti problem, , Math. Mag., 5 (1967). |
[10] |
M. Goldberg,
On the original Malfatti problem, Math. Mag., 5 (1967), 241-247.
|
[11] |
A. Heusinger and C. Kanzow,
Relaxation methods for generalized Nash equilibrium problems with inexact line search, Journal of Optimization Theory and Applications, 1 (2009), 159-183.
doi: 10.1007/s10957-009-9553-0. |
[12] |
K. Kubota and M. Fukushima,
Gap function approach to the generalized Nash equilibrium problem, Journal of Optimization Theory and Applications, 3 (2010), 511-531.
doi: 10.1007/s10957-009-9614-4. |
[13] |
H. Lob and H. W. Richmond,
On the solutions of the Malfatti problem for a triangle, Proc. London Math. Soc., 30 (1930), 287-301.
doi: 10.1112/plms/s2-30.1.287. |
[14] |
G. A. Los, Malfatti's Optimization Problem, , Dep. Ukr. NIINTI July 5, [in Russian], 1988. Google Scholar |
[15] |
C. Malfatti, Memoria sopra una problema stereotomico, Memoria di Matematica e di Fisica della Societa ttaliana della Scienze, 1 (1803), 235-244. Google Scholar |
[16] |
A. S. Strekalovsky,
On the global extrema problem, Soviet Math. Doklad, 292 (1987), 1062-1066.
|
[17] |
J.-Y. Wei and Y. Smeers, Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices, Oper. Res., 47 (1999), 102-112. Google Scholar |
[18] |
V. A. Zalgaller, An inequality for acute triangles, Ukr. Geom. Sb., 34 (1991), 10-25. Google Scholar |
[19] |
V. A. Zalgaller and G. A. Los,
The solution of Malfatti's problem, Journal of Mathematical Sciences, 4 (1994), 3163-3177.
doi: 10.1007/BF01249514. |
show all references
References:
[1] |
Ma rco Andreatta, An drás Bezdek and Jan P. Boroński, The problem of Malfatti: Two centuries of debate, The Mathematical Intelligencer, 33 (2011), 72-76. Google Scholar |
[2] |
G. Debreu,
A social equilibrium existence theorem, Proceedings of the National Academy of Sciencesof the United States of America, 38 (1952), 886-893.
doi: 10.1073/pnas.38.10.886. |
[3] |
R. Enkhbat,
An algorithm for maximizing a convex function over a simple set, Journal of Global Optimization, 8 (1996), 379-391.
doi: 10.1007/BF02403999. |
[4] |
R. Enkhbat,
Global optimization approach to Malfatti's problem, Journal of Global Optimization, 65 (2016), 3-39.
doi: 10.1007/s10898-015-0372-6. |
[5] |
R. Enkhbat, M. V. Barkova and A. S. Strekalovsky,
Solving Malfatti's high dimensional problem by global optimization, Numerical Algebra, Control and Optimization, 2 (2016), 153-160.
doi: 10.3934/naco.2016005. |
[6] |
F. Facchinei and C. Kanzow,
Generalized Nash equilibrium problems, Annals of Operations Research, 1 (2010), 177-211.
doi: 10.1007/s10479-009-0653-x. |
[7] |
Andreas Fischer, Markus Herrich and Klaus Schonefeld, Generalized Nash equilibrium problems - Recent advances and challenges, Pesquisa Operacional, 3 (2014), 521-558. Google Scholar |
[8] |
M. Fukushima, Restricted generalized Nash equilibria and controlled penalty algorithm, , Technical Report, Department of Applied Mathematics and Physics, Kyoto University, 2008-007, July (2008).
doi: 10.1007/s10287-009-0093-8. |
[9] |
H. Gabai and E. Liban, On Goldberg's inequality associated with the Malfatti problem, , Math. Mag., 5 (1967). |
[10] |
M. Goldberg,
On the original Malfatti problem, Math. Mag., 5 (1967), 241-247.
|
[11] |
A. Heusinger and C. Kanzow,
Relaxation methods for generalized Nash equilibrium problems with inexact line search, Journal of Optimization Theory and Applications, 1 (2009), 159-183.
doi: 10.1007/s10957-009-9553-0. |
[12] |
K. Kubota and M. Fukushima,
Gap function approach to the generalized Nash equilibrium problem, Journal of Optimization Theory and Applications, 3 (2010), 511-531.
doi: 10.1007/s10957-009-9614-4. |
[13] |
H. Lob and H. W. Richmond,
On the solutions of the Malfatti problem for a triangle, Proc. London Math. Soc., 30 (1930), 287-301.
doi: 10.1112/plms/s2-30.1.287. |
[14] |
G. A. Los, Malfatti's Optimization Problem, , Dep. Ukr. NIINTI July 5, [in Russian], 1988. Google Scholar |
[15] |
C. Malfatti, Memoria sopra una problema stereotomico, Memoria di Matematica e di Fisica della Societa ttaliana della Scienze, 1 (1803), 235-244. Google Scholar |
[16] |
A. S. Strekalovsky,
On the global extrema problem, Soviet Math. Doklad, 292 (1987), 1062-1066.
|
[17] |
J.-Y. Wei and Y. Smeers, Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices, Oper. Res., 47 (1999), 102-112. Google Scholar |
[18] |
V. A. Zalgaller, An inequality for acute triangles, Ukr. Geom. Sb., 34 (1991), 10-25. Google Scholar |
[19] |
V. A. Zalgaller and G. A. Los,
The solution of Malfatti's problem, Journal of Mathematical Sciences, 4 (1994), 3163-3177.
doi: 10.1007/BF01249514. |





[1] |
Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004 |
[2] |
Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020171 |
[3] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[4] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[5] |
Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171 |
[6] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[7] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
[8] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[9] |
Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021004 |
[10] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020384 |
[11] |
Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108 |
[12] |
Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169 |
[13] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[14] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[15] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020453 |
[16] |
Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020031 |
[17] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
[18] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[19] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[20] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]