In this paper we consider non-cooperative game problem based on the Malfatti's problem. This problem is a special case of generalized Nash equilibrium problems with nonconvex shared constraints. Some numerical results are provided.
Citation: |
[1] | Ma rco Andreatta, An drás Bezdek and Jan P. Boroński, The problem of Malfatti: Two centuries of debate, The Mathematical Intelligencer, 33 (2011), 72-76. |
[2] | G. Debreu, A social equilibrium existence theorem, Proceedings of the National Academy of Sciencesof the United States of America, 38 (1952), 886-893. doi: 10.1073/pnas.38.10.886. |
[3] | R. Enkhbat, An algorithm for maximizing a convex function over a simple set, Journal of Global Optimization, 8 (1996), 379-391. doi: 10.1007/BF02403999. |
[4] | R. Enkhbat, Global optimization approach to Malfatti's problem, Journal of Global Optimization, 65 (2016), 3-39. doi: 10.1007/s10898-015-0372-6. |
[5] | R. Enkhbat, M. V. Barkova and A. S. Strekalovsky, Solving Malfatti's high dimensional problem by global optimization, Numerical Algebra, Control and Optimization, 2 (2016), 153-160. doi: 10.3934/naco.2016005. |
[6] | F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems, Annals of Operations Research, 1 (2010), 177-211. doi: 10.1007/s10479-009-0653-x. |
[7] | Andreas Fischer, Markus Herrich and Klaus Schonefeld, Generalized Nash equilibrium problems - Recent advances and challenges, Pesquisa Operacional, 3 (2014), 521-558. |
[8] | M. Fukushima, Restricted generalized Nash equilibria and controlled penalty algorithm, Technical Report, Department of Applied Mathematics and Physics, Kyoto University, 2008-007, July (2008). doi: 10.1007/s10287-009-0093-8. |
[9] | H. Gabai and E. Liban, On Goldberg's inequality associated with the Malfatti problem, Math. Mag., 5 (1967). |
[10] | M. Goldberg, On the original Malfatti problem, Math. Mag., 5 (1967), 241-247. |
[11] | A. Heusinger and C. Kanzow, Relaxation methods for generalized Nash equilibrium problems with inexact line search, Journal of Optimization Theory and Applications, 1 (2009), 159-183. doi: 10.1007/s10957-009-9553-0. |
[12] | K. Kubota and M. Fukushima, Gap function approach to the generalized Nash equilibrium problem, Journal of Optimization Theory and Applications, 3 (2010), 511-531. doi: 10.1007/s10957-009-9614-4. |
[13] | H. Lob and H. W. Richmond, On the solutions of the Malfatti problem for a triangle, Proc. London Math. Soc., 30 (1930), 287-301. doi: 10.1112/plms/s2-30.1.287. |
[14] | G. A. Los, Malfatti's Optimization Problem, Dep. Ukr. NIINTI July 5, [in Russian], 1988. |
[15] | C. Malfatti, Memoria sopra una problema stereotomico, Memoria di Matematica e di Fisica della Societa ttaliana della Scienze, 1 (1803), 235-244. |
[16] | A. S. Strekalovsky, On the global extrema problem, Soviet Math. Doklad, 292 (1987), 1062-1066. |
[17] | J.-Y. Wei and Y. Smeers, Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices, Oper. Res., 47 (1999), 102-112. |
[18] | V. A. Zalgaller, An inequality for acute triangles, Ukr. Geom. Sb., 34 (1991), 10-25. |
[19] | V. A. Zalgaller and G. A. Los, The solution of Malfatti's problem, Journal of Mathematical Sciences, 4 (1994), 3163-3177. doi: 10.1007/BF01249514. |