• Previous Article
    Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey
  • NACO Home
  • This Issue
  • Next Article
    Numerical simulations of a rolling ball robot actuated by internal point masses
doi: 10.3934/naco.2020022

Generalized nash equilibrium problem based on malfatti's problem

1. 

Institute of Mathematics and Digital Technology, Academy of Sciences of Mongolia, Ulaanbaatar, Mongolia

2. 

Center of Mathematics for Applications and Department of Applied Mathematics, National University of Mongolia, Ulaanbaatar, Mongolia

* Corresponding author: Battur Gompil

Received  August 2019 Revised  December 2019 Published  March 2020

In this paper we consider non-cooperative game problem based on the Malfatti's problem. This problem is a special case of generalized Nash equilibrium problems with nonconvex shared constraints. Some numerical results are provided.

Citation: Enkhbat Rentsen, Battur Gompil. Generalized nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2020022
References:
[1]

Ma rco AndreattaAn drás Bezdek and Jan P. Boroński, The problem of Malfatti: Two centuries of debate, The Mathematical Intelligencer, 33 (2011), 72-76.   Google Scholar

[2]

G. Debreu, A social equilibrium existence theorem, Proceedings of the National Academy of Sciencesof the United States of America, 38 (1952), 886-893.  doi: 10.1073/pnas.38.10.886.  Google Scholar

[3]

R. Enkhbat, An algorithm for maximizing a convex function over a simple set, Journal of Global Optimization, 8 (1996), 379-391.  doi: 10.1007/BF02403999.  Google Scholar

[4]

R. Enkhbat, Global optimization approach to Malfatti's problem, Journal of Global Optimization, 65 (2016), 3-39.  doi: 10.1007/s10898-015-0372-6.  Google Scholar

[5]

R. EnkhbatM. V. Barkova and A. S. Strekalovsky, Solving Malfatti's high dimensional problem by global optimization, Numerical Algebra, Control and Optimization, 2 (2016), 153-160.  doi: 10.3934/naco.2016005.  Google Scholar

[6]

F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems, Annals of Operations Research, 1 (2010), 177-211.  doi: 10.1007/s10479-009-0653-x.  Google Scholar

[7]

Andreas FischerMarkus Herrich and Klaus Schonefeld, Generalized Nash equilibrium problems - Recent advances and challenges, Pesquisa Operacional, 3 (2014), 521-558.   Google Scholar

[8]

M. Fukushima, Restricted generalized Nash equilibria and controlled penalty algorithm, , Technical Report, Department of Applied Mathematics and Physics, Kyoto University, 2008-007, July (2008). doi: 10.1007/s10287-009-0093-8.  Google Scholar

[9]

H. Gabai and E. Liban, On Goldberg's inequality associated with the Malfatti problem, , Math. Mag., 5 (1967).  Google Scholar

[10]

M. Goldberg, On the original Malfatti problem, Math. Mag., 5 (1967), 241-247.   Google Scholar

[11]

A. Heusinger and C. Kanzow, Relaxation methods for generalized Nash equilibrium problems with inexact line search, Journal of Optimization Theory and Applications, 1 (2009), 159-183.  doi: 10.1007/s10957-009-9553-0.  Google Scholar

[12]

K. Kubota and M. Fukushima, Gap function approach to the generalized Nash equilibrium problem, Journal of Optimization Theory and Applications, 3 (2010), 511-531.  doi: 10.1007/s10957-009-9614-4.  Google Scholar

[13]

H. Lob and H. W. Richmond, On the solutions of the Malfatti problem for a triangle, Proc. London Math. Soc., 30 (1930), 287-301.  doi: 10.1112/plms/s2-30.1.287.  Google Scholar

[14]

G. A. Los, Malfatti's Optimization Problem, , Dep. Ukr. NIINTI July 5, [in Russian], 1988. Google Scholar

[15]

C. Malfatti, Memoria sopra una problema stereotomico, Memoria di Matematica e di Fisica della Societa ttaliana della Scienze, 1 (1803), 235-244.   Google Scholar

[16]

A. S. Strekalovsky, On the global extrema problem, Soviet Math. Doklad, 292 (1987), 1062-1066.   Google Scholar

[17]

J.-Y. Wei and Y. Smeers, Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices, Oper. Res., 47 (1999), 102-112.   Google Scholar

[18]

V. A. Zalgaller, An inequality for acute triangles, Ukr. Geom. Sb., 34 (1991), 10-25.   Google Scholar

[19]

V. A. Zalgaller and G. A. Los, The solution of Malfatti's problem, Journal of Mathematical Sciences, 4 (1994), 3163-3177.  doi: 10.1007/BF01249514.  Google Scholar

show all references

References:
[1]

Ma rco AndreattaAn drás Bezdek and Jan P. Boroński, The problem of Malfatti: Two centuries of debate, The Mathematical Intelligencer, 33 (2011), 72-76.   Google Scholar

[2]

G. Debreu, A social equilibrium existence theorem, Proceedings of the National Academy of Sciencesof the United States of America, 38 (1952), 886-893.  doi: 10.1073/pnas.38.10.886.  Google Scholar

[3]

R. Enkhbat, An algorithm for maximizing a convex function over a simple set, Journal of Global Optimization, 8 (1996), 379-391.  doi: 10.1007/BF02403999.  Google Scholar

[4]

R. Enkhbat, Global optimization approach to Malfatti's problem, Journal of Global Optimization, 65 (2016), 3-39.  doi: 10.1007/s10898-015-0372-6.  Google Scholar

[5]

R. EnkhbatM. V. Barkova and A. S. Strekalovsky, Solving Malfatti's high dimensional problem by global optimization, Numerical Algebra, Control and Optimization, 2 (2016), 153-160.  doi: 10.3934/naco.2016005.  Google Scholar

[6]

F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems, Annals of Operations Research, 1 (2010), 177-211.  doi: 10.1007/s10479-009-0653-x.  Google Scholar

[7]

Andreas FischerMarkus Herrich and Klaus Schonefeld, Generalized Nash equilibrium problems - Recent advances and challenges, Pesquisa Operacional, 3 (2014), 521-558.   Google Scholar

[8]

M. Fukushima, Restricted generalized Nash equilibria and controlled penalty algorithm, , Technical Report, Department of Applied Mathematics and Physics, Kyoto University, 2008-007, July (2008). doi: 10.1007/s10287-009-0093-8.  Google Scholar

[9]

H. Gabai and E. Liban, On Goldberg's inequality associated with the Malfatti problem, , Math. Mag., 5 (1967).  Google Scholar

[10]

M. Goldberg, On the original Malfatti problem, Math. Mag., 5 (1967), 241-247.   Google Scholar

[11]

A. Heusinger and C. Kanzow, Relaxation methods for generalized Nash equilibrium problems with inexact line search, Journal of Optimization Theory and Applications, 1 (2009), 159-183.  doi: 10.1007/s10957-009-9553-0.  Google Scholar

[12]

K. Kubota and M. Fukushima, Gap function approach to the generalized Nash equilibrium problem, Journal of Optimization Theory and Applications, 3 (2010), 511-531.  doi: 10.1007/s10957-009-9614-4.  Google Scholar

[13]

H. Lob and H. W. Richmond, On the solutions of the Malfatti problem for a triangle, Proc. London Math. Soc., 30 (1930), 287-301.  doi: 10.1112/plms/s2-30.1.287.  Google Scholar

[14]

G. A. Los, Malfatti's Optimization Problem, , Dep. Ukr. NIINTI July 5, [in Russian], 1988. Google Scholar

[15]

C. Malfatti, Memoria sopra una problema stereotomico, Memoria di Matematica e di Fisica della Societa ttaliana della Scienze, 1 (1803), 235-244.   Google Scholar

[16]

A. S. Strekalovsky, On the global extrema problem, Soviet Math. Doklad, 292 (1987), 1062-1066.   Google Scholar

[17]

J.-Y. Wei and Y. Smeers, Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices, Oper. Res., 47 (1999), 102-112.   Google Scholar

[18]

V. A. Zalgaller, An inequality for acute triangles, Ukr. Geom. Sb., 34 (1991), 10-25.   Google Scholar

[19]

V. A. Zalgaller and G. A. Los, The solution of Malfatti's problem, Journal of Mathematical Sciences, 4 (1994), 3163-3177.  doi: 10.1007/BF01249514.  Google Scholar

Figure 1.  Stationary Nash equilibrium
Figure 2.  Case 1
Figure 3.  Case 2
Figure 4.  Case 1
Figure 5.  Case 2
[1]

Rentsen Enkhbat, Evgeniya A. Finkelstein, Anton S. Anikin, Alexandr Yu. Gornov. Global optimization reduction of generalized Malfatti's problem. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 211-221. doi: 10.3934/naco.2017015

[2]

Jie Xiong, Shuaiqi Zhang, Yi Zhuang. A partially observed non-zero sum differential game of forward-backward stochastic differential equations and its application in finance. Mathematical Control & Related Fields, 2019, 9 (2) : 257-276. doi: 10.3934/mcrf.2019013

[3]

Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1795-1807. doi: 10.3934/jimo.2018123

[4]

Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial & Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27

[5]

Rentsen Enkhbat, M. V. Barkova, A. S. Strekalovsky. Solving Malfatti's high dimensional problem by global optimization. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 153-160. doi: 10.3934/naco.2016005

[6]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[7]

Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020004

[8]

Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

[9]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2012, 8 (1) : 51-65. doi: 10.3934/jimo.2012.8.51

[10]

Moez Kallel, Maher Moakher, Anis Theljani. The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting. Inverse Problems & Imaging, 2015, 9 (3) : 853-874. doi: 10.3934/ipi.2015.9.853

[11]

Asaf Kislev. Compactly supported Hamiltonian loops with a non-zero Calabi invariant. Electronic Research Announcements, 2014, 21: 80-88. doi: 10.3934/era.2014.21.80

[12]

Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225

[13]

Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control & Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010

[14]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[15]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[16]

Harald Garcke, Kei Fong Lam. Analysis of a Cahn--Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4277-4308. doi: 10.3934/dcds.2017183

[17]

Kyouhei Wakasa. Blow-up of solutions to semilinear wave equations with non-zero initial data. Conference Publications, 2015, 2015 (special) : 1105-1114. doi: 10.3934/proc.2015.1105

[18]

Delia Ionescu-Kruse. Variational derivation of the Camassa-Holm shallow water equation with non-zero vorticity. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 531-543. doi: 10.3934/dcds.2007.19.531

[19]

Yongluo Cao, Stefano Luzzatto, Isabel Rios. Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: Horseshoes with internal tangencies. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 61-71. doi: 10.3934/dcds.2006.15.61

[20]

C. Davini, F. Jourdan. Approximations of degree zero in the Poisson problem. Communications on Pure & Applied Analysis, 2005, 4 (2) : 267-281. doi: 10.3934/cpaa.2005.4.267

 Impact Factor: 

Metrics

  • PDF downloads (61)
  • HTML views (193)
  • Cited by (0)

Other articles
by authors

[Back to Top]