In this paper we consider non-cooperative game problem based on the Malfatti's problem. This problem is a special case of generalized Nash equilibrium problems with nonconvex shared constraints. Some numerical results are provided.
Citation: |
[1] |
Ma rco Andreatta, An drás Bezdek and Jan P. Boroński, The problem of Malfatti: Two centuries of debate, The Mathematical Intelligencer, 33 (2011), 72-76.
![]() |
[2] |
G. Debreu, A social equilibrium existence theorem, Proceedings of the National Academy of Sciencesof the United States of America, 38 (1952), 886-893.
doi: 10.1073/pnas.38.10.886.![]() ![]() ![]() |
[3] |
R. Enkhbat, An algorithm for maximizing a convex function over a simple set, Journal of Global Optimization, 8 (1996), 379-391.
doi: 10.1007/BF02403999.![]() ![]() ![]() |
[4] |
R. Enkhbat, Global optimization approach to Malfatti's problem, Journal of Global Optimization, 65 (2016), 3-39.
doi: 10.1007/s10898-015-0372-6.![]() ![]() ![]() |
[5] |
R. Enkhbat, M. V. Barkova and A. S. Strekalovsky, Solving Malfatti's high dimensional problem by global optimization, Numerical Algebra, Control and Optimization, 2 (2016), 153-160.
doi: 10.3934/naco.2016005.![]() ![]() ![]() |
[6] |
F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems, Annals of Operations Research, 1 (2010), 177-211.
doi: 10.1007/s10479-009-0653-x.![]() ![]() ![]() |
[7] |
Andreas Fischer, Markus Herrich and Klaus Schonefeld, Generalized Nash equilibrium problems - Recent advances and challenges, Pesquisa Operacional, 3 (2014), 521-558.
![]() |
[8] |
M. Fukushima, Restricted generalized Nash equilibria and controlled penalty algorithm, Technical Report, Department of Applied Mathematics and Physics, Kyoto University, 2008-007, July (2008).
doi: 10.1007/s10287-009-0093-8.![]() ![]() ![]() |
[9] |
H. Gabai and E. Liban, On Goldberg's inequality associated with the Malfatti problem, Math. Mag., 5 (1967).
![]() ![]() |
[10] |
M. Goldberg, On the original Malfatti problem, Math. Mag., 5 (1967), 241-247.
![]() ![]() |
[11] |
A. Heusinger and C. Kanzow, Relaxation methods for generalized Nash equilibrium problems with inexact line search, Journal of Optimization Theory and Applications, 1 (2009), 159-183.
doi: 10.1007/s10957-009-9553-0.![]() ![]() ![]() |
[12] |
K. Kubota and M. Fukushima, Gap function approach to the generalized Nash equilibrium problem, Journal of Optimization Theory and Applications, 3 (2010), 511-531.
doi: 10.1007/s10957-009-9614-4.![]() ![]() ![]() |
[13] |
H. Lob and H. W. Richmond, On the solutions of the Malfatti problem for a triangle, Proc. London Math. Soc., 30 (1930), 287-301.
doi: 10.1112/plms/s2-30.1.287.![]() ![]() ![]() |
[14] |
G. A. Los, Malfatti's Optimization Problem, Dep. Ukr. NIINTI July 5, [in Russian], 1988.
![]() |
[15] |
C. Malfatti, Memoria sopra una problema stereotomico, Memoria di Matematica e di Fisica della Societa ttaliana della Scienze, 1 (1803), 235-244.
![]() |
[16] |
A. S. Strekalovsky, On the global extrema problem, Soviet Math. Doklad, 292 (1987), 1062-1066.
![]() ![]() |
[17] |
J.-Y. Wei and Y. Smeers, Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices, Oper. Res., 47 (1999), 102-112.
![]() |
[18] |
V. A. Zalgaller, An inequality for acute triangles, Ukr. Geom. Sb., 34 (1991), 10-25.
![]() |
[19] |
V. A. Zalgaller and G. A. Los, The solution of Malfatti's problem, Journal of Mathematical Sciences, 4 (1994), 3163-3177.
doi: 10.1007/BF01249514.![]() ![]() ![]() |