
-
Previous Article
An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems
- NACO Home
- This Issue
-
Next Article
Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks
Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation
1. | Department of Mathematics, Sinop University, Sinop, 57000, Turkey |
2. | Turkish Scientific and Technological Research Council (TÜBİTAK), Ankara, 06100, Turkey |
We apply a space adaptive interior penalty discontinuous Galerkin method for solving advective Allen-Cahn equation with expanding and contracting velocity fields. The advective Allen-Cahn equation is first discretized in time and the resulting semi-linear elliptic PDE is solved by an adaptive algorithm using a residual-based a posteriori error estimator. The a posteriori error estimator contains additional terms due to the non-divergence-free velocity field. Numerical examples demonstrate the effectiveness and accuracy of the adaptive approach by resolving the sharp layers accurately.
References:
[1] |
M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics, John Wiley $ & $ Sons, Inc., 2000.
doi: 10.1002/9781118032824. |
[2] |
D. N. Arnold,
An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 724-760.
doi: 10.1137/0719052. |
[3] |
I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability, Numerical Mathematics and Scientific Computation, Clarendon Press, 2001.
![]() |
[4] |
J. W. Barrett, J. F. Blowey and H. Garcke,
Finite element approximation of a fourth order nonlinear degenerate parabolic equation, Numerische Mathematik, 80 (1998), 525-556.
doi: 10.1007/s002110050377. |
[5] |
A. Cangiani, E. H. Georgoulis and S. Metcalfe,
Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems, IMA Journal of Numerical Analysis, 34 (2013), 1578-1597.
doi: 10.1093/imanum/drt052. |
[6] |
L. Chen, $i$FEM: An Innovative Finite Element Methods Package in MATLAB, Technical Report, Department of Mathematics, University of California, Irvine, 2008. Google Scholar |
[7] |
L. Q. Chen,
Phase-field models for microstructure evolution, Annual Review of Materials Research, 32 (2002), 113-140.
doi: 10.1146/annurev.matsci.32.112001.132041. |
[8] |
P. Deuflhard and M. Weiser, Adaptive Numerical Solution of PDEs, De Gruyter Textbook, Walter de Gruyter, 2012.
doi: 10.1515/9783110283112. |
[9] |
A. Ern, A. F. Stephansen and M. Vohralík,
Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems, Journal of Computational and Applied Mathematics, 234 (2010), 114-130.
doi: 10.1016/j.cam.2009.12.009. |
[10] |
P. C. Hohenberg and B. I. Halperin,
Theory of dynamic critical phenomena, Reviews of Modern Physics, 49 (1977), 435-479.
doi: 10.1103/RevModPhys.49.435. |
[11] |
R. H. W. Hoppe, G. Kanschat and T. Warburton,
Convergence analysis of an adaptive interior penalty discontinuous Galerkin method, SIAM Journal on Numerical Analysis, 47 (2008), 534-550.
doi: 10.1137/070704599. |
[12] |
P. Houston, C. Schwab and E. Süli,
Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39 (2002), 2133-2163.
doi: 10.1137/S0036142900374111. |
[13] |
O. A. Karakashian and F. Pascal,
Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems, SIAM Journal on Numerical Analysis, 45 (2007), 641-665.
doi: 10.1137/05063979X. |
[14] |
B. Karasözen and M. Uzunca,
Time-space adaptive discontinuous Galerkin method for advection-diffusion equations with non-linear reaction mechanism, GEM - International Journal on Geomathematics, 5 (2014), 255-288.
doi: 10.1007/s13137-014-0067-z. |
[15] |
M. S. Khan, Phase Field Methods for Multi-Phase Flow Simulations, PhD Thesis, Technische Universitat Dortmund, Institut für Angewandte Mathematik (LS III), Dortmund, 2009. Google Scholar |
[16] |
P. Lesaint and P. A. Raviert, On a finite element for solving the neutron transport equation, mathematical aspects of finite elements in partial differential equations, Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, (1974), 89–123. |
[17] |
W. Liu, Two Dynamical System Models on Real–World Scenarios: A Swarming Control Model and a Surface Tension Model, PhD thesis, University of California, Los Angeles, 2011. |
[18] |
W. Liu, A. Bertozzi and T. Kolokolnikov,
Diffuse interface surface tension models in an expanding flow, Comm. Math. Sci., 10 (2012), 387-418.
doi: 10.4310/CMS.2012.v10.n1.a16. |
[19] |
S. Osher and J. A. Sethian,
Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2. |
[20] |
W. H. Reed and T. R. Hill, Triangular Mesh Methods for the Neutron Transport Equation, Technical Report LA-UR-73-479, Los Alomos Scientific Laboratory, Los Alomos, NM, 1973. Google Scholar |
[21] |
B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation, Frontiers in Applied Mathematics, SIAM, 2008.
doi: 10.1137/1.9780898717440. |
[22] |
B. Rivière and M. F. Wheeler,
A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems, Computers Math. with Applications, 46 (2003), 141-163.
doi: 10.1016/S0898-1221(03)90086-1. |
[23] |
D. Schötzau and L. Zhu,
A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations, Applied Numerical Mathematics, 59 (2009), 2236-2255.
doi: 10.1016/j.apnum.2008.12.014. |
[24] |
J. Shen, T. Tang and J. Yang,
On the maximum principle preserving schemes for the generalized Allen-Cahn equation, Commun. Math. Sci., 14 (2016), 1517-1534.
doi: 10.4310/CMS.2016.v14.n6.a3. |
[25] |
J. Shen and X. Yang,
A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM Journal on Scientific Computing, 32 (2010), 1159-1179.
doi: 10.1137/09075860X. |
[26] |
P. Solin, K. Segeth and I. Dolezel, Higher-Order Finite Element Methods, Studies in Advanced Mathematics, Chapman & Hall/CRC Press, 2003.
![]() |
[27] |
M. Uzunca, B. Karasözen and M. Manguoğlu, Adaptive discontinuous Galerkin methods for non-linear diffusion-convection-reaction equations, Computers and Chemical Engineering, 68 (2014), 24-37. Google Scholar |
[28] |
D. F. M. Vasconcelos, A. L. Rossa and A. L. G. A. Coutinho, A residual-based Allen-Cahn phase field model for the mixture of incompressible fluid flows, International Journal for Numerical Methods in Fluids, 75 (2014), 645-667. Google Scholar |
[29] |
R. Verfürth,
Robust a posteriori error estimates for stationary convection-diffusion equations, SIAM Journal on Numerical Analysis, 43 (2005), 1766-1782.
doi: 10.1137/040604261. |
[30] |
Z. Zhang and H. Tang,
An adaptive phase field method for the mixture of two incompressible fluids, Computers & Fluids, 36 (2007), 1307-1318.
doi: 10.1016/j.compfluid.2006.12.003. |
show all references
References:
[1] |
M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics, John Wiley $ & $ Sons, Inc., 2000.
doi: 10.1002/9781118032824. |
[2] |
D. N. Arnold,
An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 724-760.
doi: 10.1137/0719052. |
[3] |
I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability, Numerical Mathematics and Scientific Computation, Clarendon Press, 2001.
![]() |
[4] |
J. W. Barrett, J. F. Blowey and H. Garcke,
Finite element approximation of a fourth order nonlinear degenerate parabolic equation, Numerische Mathematik, 80 (1998), 525-556.
doi: 10.1007/s002110050377. |
[5] |
A. Cangiani, E. H. Georgoulis and S. Metcalfe,
Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems, IMA Journal of Numerical Analysis, 34 (2013), 1578-1597.
doi: 10.1093/imanum/drt052. |
[6] |
L. Chen, $i$FEM: An Innovative Finite Element Methods Package in MATLAB, Technical Report, Department of Mathematics, University of California, Irvine, 2008. Google Scholar |
[7] |
L. Q. Chen,
Phase-field models for microstructure evolution, Annual Review of Materials Research, 32 (2002), 113-140.
doi: 10.1146/annurev.matsci.32.112001.132041. |
[8] |
P. Deuflhard and M. Weiser, Adaptive Numerical Solution of PDEs, De Gruyter Textbook, Walter de Gruyter, 2012.
doi: 10.1515/9783110283112. |
[9] |
A. Ern, A. F. Stephansen and M. Vohralík,
Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems, Journal of Computational and Applied Mathematics, 234 (2010), 114-130.
doi: 10.1016/j.cam.2009.12.009. |
[10] |
P. C. Hohenberg and B. I. Halperin,
Theory of dynamic critical phenomena, Reviews of Modern Physics, 49 (1977), 435-479.
doi: 10.1103/RevModPhys.49.435. |
[11] |
R. H. W. Hoppe, G. Kanschat and T. Warburton,
Convergence analysis of an adaptive interior penalty discontinuous Galerkin method, SIAM Journal on Numerical Analysis, 47 (2008), 534-550.
doi: 10.1137/070704599. |
[12] |
P. Houston, C. Schwab and E. Süli,
Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39 (2002), 2133-2163.
doi: 10.1137/S0036142900374111. |
[13] |
O. A. Karakashian and F. Pascal,
Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems, SIAM Journal on Numerical Analysis, 45 (2007), 641-665.
doi: 10.1137/05063979X. |
[14] |
B. Karasözen and M. Uzunca,
Time-space adaptive discontinuous Galerkin method for advection-diffusion equations with non-linear reaction mechanism, GEM - International Journal on Geomathematics, 5 (2014), 255-288.
doi: 10.1007/s13137-014-0067-z. |
[15] |
M. S. Khan, Phase Field Methods for Multi-Phase Flow Simulations, PhD Thesis, Technische Universitat Dortmund, Institut für Angewandte Mathematik (LS III), Dortmund, 2009. Google Scholar |
[16] |
P. Lesaint and P. A. Raviert, On a finite element for solving the neutron transport equation, mathematical aspects of finite elements in partial differential equations, Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, (1974), 89–123. |
[17] |
W. Liu, Two Dynamical System Models on Real–World Scenarios: A Swarming Control Model and a Surface Tension Model, PhD thesis, University of California, Los Angeles, 2011. |
[18] |
W. Liu, A. Bertozzi and T. Kolokolnikov,
Diffuse interface surface tension models in an expanding flow, Comm. Math. Sci., 10 (2012), 387-418.
doi: 10.4310/CMS.2012.v10.n1.a16. |
[19] |
S. Osher and J. A. Sethian,
Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2. |
[20] |
W. H. Reed and T. R. Hill, Triangular Mesh Methods for the Neutron Transport Equation, Technical Report LA-UR-73-479, Los Alomos Scientific Laboratory, Los Alomos, NM, 1973. Google Scholar |
[21] |
B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation, Frontiers in Applied Mathematics, SIAM, 2008.
doi: 10.1137/1.9780898717440. |
[22] |
B. Rivière and M. F. Wheeler,
A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems, Computers Math. with Applications, 46 (2003), 141-163.
doi: 10.1016/S0898-1221(03)90086-1. |
[23] |
D. Schötzau and L. Zhu,
A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations, Applied Numerical Mathematics, 59 (2009), 2236-2255.
doi: 10.1016/j.apnum.2008.12.014. |
[24] |
J. Shen, T. Tang and J. Yang,
On the maximum principle preserving schemes for the generalized Allen-Cahn equation, Commun. Math. Sci., 14 (2016), 1517-1534.
doi: 10.4310/CMS.2016.v14.n6.a3. |
[25] |
J. Shen and X. Yang,
A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM Journal on Scientific Computing, 32 (2010), 1159-1179.
doi: 10.1137/09075860X. |
[26] |
P. Solin, K. Segeth and I. Dolezel, Higher-Order Finite Element Methods, Studies in Advanced Mathematics, Chapman & Hall/CRC Press, 2003.
![]() |
[27] |
M. Uzunca, B. Karasözen and M. Manguoğlu, Adaptive discontinuous Galerkin methods for non-linear diffusion-convection-reaction equations, Computers and Chemical Engineering, 68 (2014), 24-37. Google Scholar |
[28] |
D. F. M. Vasconcelos, A. L. Rossa and A. L. G. A. Coutinho, A residual-based Allen-Cahn phase field model for the mixture of incompressible fluid flows, International Journal for Numerical Methods in Fluids, 75 (2014), 645-667. Google Scholar |
[29] |
R. Verfürth,
Robust a posteriori error estimates for stationary convection-diffusion equations, SIAM Journal on Numerical Analysis, 43 (2005), 1766-1782.
doi: 10.1137/040604261. |
[30] |
Z. Zhang and H. Tang,
An adaptive phase field method for the mixture of two incompressible fluids, Computers & Fluids, 36 (2007), 1307-1318.
doi: 10.1016/j.compfluid.2006.12.003. |




[1] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[2] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020402 |
[3] |
Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078 |
[4] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[5] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[6] |
Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233 |
[7] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[8] |
Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327 |
[9] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[10] |
Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127 |
[11] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[12] |
Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013 |
[13] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020180 |
[14] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[15] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[16] |
Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007 |
[17] |
Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303 |
[18] |
Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, 2021, 20 (2) : 495-510. doi: 10.3934/cpaa.2020277 |
[19] |
Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076 |
[20] |
Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020462 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]