-
Previous Article
Comparison between Taylor and perturbed method for Volterra integral equation of the first kind
- NACO Home
- This Issue
- Next Article
Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay
Department of Applied Mathematics, ORT Braude College of Engineering, Karmiel, Israel, and, Independent Center for Studies, in Control Theory and Applications, Haifa, Israel |
A singularly perturbed linear time-dependent controlled system with a point-wise nonsmall (of order of $ 1 $) delay in the input (the control variable) is considered. Sufficient conditions of the complete Euclidean space controllability for this system, robust with respect to the parameter of singular perturbation, are derived. This derivation is based on an asymptotic analysis of the controllability matrix for the considered system and on such an analysis of the determinant of this matrix. However, this derivation does not use a slow-fast decomposition of the considered system. The theoretical result is illustrated by an example.
References:
[1] |
A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Birkhuser, Boston, 2007. |
[2] |
M. G. Dmitriev and G. A. Kurina,
Singular perturbations in control problems, Automat. Rem. Contr., 67 (2006), 1-43.
doi: 10.1134/S0005117906010012. |
[3] |
E. Fridman,
Robust sampled-data $H_\infty$ control of linear singularly perturbed systems, IEEE Trans. Automat. Control, 51 (2006), 470-475.
doi: 10.1109/TAC.2005.864194. |
[4] |
R. Gabasov and F. M. Kirillova, The Qualitative Theory of Optimal Processes, Marcel Dekker Inc., New York, 1976. |
[5] |
V. Y. Glizer,
Novel controllability conditions for a class of singularly perturbed systems with small state delays, J. Optim. Theory Appl., 137 (2008), 135-156.
doi: 10.1007/s10957-007-9324-8. |
[6] |
V. Y. Glizer,
Cheap quadratic control of linear systems with state and control delays, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012), 277-301.
|
[7] |
V. Y. Glizer,
Controllability conditions of linear singularly perturbed systems with small state and input delays, Math. Control Signals Systems, 28 (2016), 1-29.
doi: 10.1007/s00498-015-0152-3. |
[8] |
V. Y. Glizer,
Euclidean space output controllability of singularly perturbed systems with small state delays, J. Appl. Math. Comput., 57 (2018), 1-38.
doi: 10.1007/s12190-017-1092-5. |
[9] |
V. Y. Glizer,
Euclidean space controllability conditions for singularly perturbed linear systems with multiple state and control delays, Axioms, 8 (2019), 1-27.
doi: 10.1007/s12190-017-1092-5. |
[10] |
V. Y. Glizer, Euclidean space controllability conditions of singularly perturbed systems with multiple state and control delays, in Proceedings of the 15th IEEE International Conference on Control and Automation, Edinburgh, Scotland, (2019), 1144–1149. Google Scholar |
[11] |
V. Y. Glizer, Conditions of functional null controllability for some types of singularly perturbed nonlinear systems with delays, Axioms, 8 (2019), 1-19. Google Scholar |
[12] |
V. Y. Glizer and V. Turetsky, Robust Controllability of Linear Systems, Nova Science Publishers Inc., New York, 2012. Google Scholar |
[13] |
R. E. Kalman,
Contributions to the theory of optimal control, Bol. Soc. Mat. Mex., 5 (1960), 102-119.
|
[14] |
J. Klamka, Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht, Netherlands, 1991. |
[15] |
J. Klamka,
Controllability of dynamical systems. A survey, Bulletin of the Polish Academy of Sciences: Technical Sciences, 61 (2013), 335-342.
|
[16] |
P. V. Kokotovic, H. K. Khalil and J. O'Reilly, Singular Perturbation Methods in Control: Analysis and Design, Academic Press, London, 1986.
![]() |
[17] |
T. B. Kopeikina,
Controllability of singularly perturbed linear systems with time-lag, Differ. Equ., 25 (1989), 1055-1064.
|
[18] |
T. B. Kopeikina,
Unified method of investigating controllability and observability problems of time-variable differential systems, Funct. Differ. Equ., 13 (2006), 463-481.
|
[19] |
C. Kuehn, Multiple Time Scale Dynamics, Springer, New York, 2015.
doi: 10.1007/978-3-319-12316-5. |
[20] |
G. A. Kurina,
Complete controllability of singularly perturbed systems with slow and fast modes, Math. Notes, 52 (1992), 1029-1033.
doi: 10.1007/BF01210436. |
[21] |
C. G. Lange and R. M. Miura,
Singular perturbation analysis of boundary-value problems for differential-difference equations. Part V: small shifts with layer behavior, SIAM J. Appl. Math., 54 (1994), 249-272.
doi: 10.1137/S0036139992228120. |
[22] |
L. Pavel, Game Theory for Control of Optical Networks, Birkhauser, Basel, Switzerland, 2012.
doi: 10.1007/978-0-8176-8322-1. |
[23] |
M. L. Pe$\stackrel{ }{ n }$a,
Asymptotic expansion for the initial value problem of the sunflower equation, J. Math. Anal. Appl., 143 (1989), 471-479.
doi: 10.1016/0022-247X(89)90053-X. |
[24] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, New York, 1962. |
[25] |
P. B. Reddy and and P. Sannuti, Optimal control of a coupled-core nuclear reactor by singular perturbation method, IEEE Trans. Automat. Control, 20 (1975), 766-769. Google Scholar |
[26] |
P. Sannuti,
On the controllability of singularly perturbed systems, IEEE Trans. Automat. Control, 22 (1977), 622-624.
doi: 10.1109/tac.1977.1101568. |
[27] |
P. Sannuti,
On the controllability of some singularly perturbed nonlinear systems, J. Math. Anal. Appl., 64 (1978), 579-591.
doi: 10.1016/0022-247X(78)90006-9. |
[28] |
E. Schöll, G. Hiller, P. Hövel and M. A. Dahlem,
Time-delayed feedback in neurosystems, Phil. Trans. R. Soc. A, 367 (2009), 1079-1096.
doi: 10.1098/rsta.2008.0258. |
[29] |
N. Stefanovic and L. Pavel, A Lyapunov-Krasovskii stability analysis for game-theoretic based power control in optical links, Telecommun. Syst., 47 (2011), 19-33. Google Scholar |
[30] |
O. Tsekhan, Complete controllability conditions for linear singularly perturbed time-invariant systems with multiple delays via Chang-type transformation, Axioms, 8 (2019), 1-19. Google Scholar |
[31] |
Y. Zhang, D. S. Naidu, C. Cai and Y. Zou, Singular perturbations and time scales in control theories and applications: an overview 2002–2012, Int. J. Inf. Syst. Sci. 9 (2014), 1-36. |
show all references
References:
[1] |
A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Birkhuser, Boston, 2007. |
[2] |
M. G. Dmitriev and G. A. Kurina,
Singular perturbations in control problems, Automat. Rem. Contr., 67 (2006), 1-43.
doi: 10.1134/S0005117906010012. |
[3] |
E. Fridman,
Robust sampled-data $H_\infty$ control of linear singularly perturbed systems, IEEE Trans. Automat. Control, 51 (2006), 470-475.
doi: 10.1109/TAC.2005.864194. |
[4] |
R. Gabasov and F. M. Kirillova, The Qualitative Theory of Optimal Processes, Marcel Dekker Inc., New York, 1976. |
[5] |
V. Y. Glizer,
Novel controllability conditions for a class of singularly perturbed systems with small state delays, J. Optim. Theory Appl., 137 (2008), 135-156.
doi: 10.1007/s10957-007-9324-8. |
[6] |
V. Y. Glizer,
Cheap quadratic control of linear systems with state and control delays, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012), 277-301.
|
[7] |
V. Y. Glizer,
Controllability conditions of linear singularly perturbed systems with small state and input delays, Math. Control Signals Systems, 28 (2016), 1-29.
doi: 10.1007/s00498-015-0152-3. |
[8] |
V. Y. Glizer,
Euclidean space output controllability of singularly perturbed systems with small state delays, J. Appl. Math. Comput., 57 (2018), 1-38.
doi: 10.1007/s12190-017-1092-5. |
[9] |
V. Y. Glizer,
Euclidean space controllability conditions for singularly perturbed linear systems with multiple state and control delays, Axioms, 8 (2019), 1-27.
doi: 10.1007/s12190-017-1092-5. |
[10] |
V. Y. Glizer, Euclidean space controllability conditions of singularly perturbed systems with multiple state and control delays, in Proceedings of the 15th IEEE International Conference on Control and Automation, Edinburgh, Scotland, (2019), 1144–1149. Google Scholar |
[11] |
V. Y. Glizer, Conditions of functional null controllability for some types of singularly perturbed nonlinear systems with delays, Axioms, 8 (2019), 1-19. Google Scholar |
[12] |
V. Y. Glizer and V. Turetsky, Robust Controllability of Linear Systems, Nova Science Publishers Inc., New York, 2012. Google Scholar |
[13] |
R. E. Kalman,
Contributions to the theory of optimal control, Bol. Soc. Mat. Mex., 5 (1960), 102-119.
|
[14] |
J. Klamka, Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht, Netherlands, 1991. |
[15] |
J. Klamka,
Controllability of dynamical systems. A survey, Bulletin of the Polish Academy of Sciences: Technical Sciences, 61 (2013), 335-342.
|
[16] |
P. V. Kokotovic, H. K. Khalil and J. O'Reilly, Singular Perturbation Methods in Control: Analysis and Design, Academic Press, London, 1986.
![]() |
[17] |
T. B. Kopeikina,
Controllability of singularly perturbed linear systems with time-lag, Differ. Equ., 25 (1989), 1055-1064.
|
[18] |
T. B. Kopeikina,
Unified method of investigating controllability and observability problems of time-variable differential systems, Funct. Differ. Equ., 13 (2006), 463-481.
|
[19] |
C. Kuehn, Multiple Time Scale Dynamics, Springer, New York, 2015.
doi: 10.1007/978-3-319-12316-5. |
[20] |
G. A. Kurina,
Complete controllability of singularly perturbed systems with slow and fast modes, Math. Notes, 52 (1992), 1029-1033.
doi: 10.1007/BF01210436. |
[21] |
C. G. Lange and R. M. Miura,
Singular perturbation analysis of boundary-value problems for differential-difference equations. Part V: small shifts with layer behavior, SIAM J. Appl. Math., 54 (1994), 249-272.
doi: 10.1137/S0036139992228120. |
[22] |
L. Pavel, Game Theory for Control of Optical Networks, Birkhauser, Basel, Switzerland, 2012.
doi: 10.1007/978-0-8176-8322-1. |
[23] |
M. L. Pe$\stackrel{ }{ n }$a,
Asymptotic expansion for the initial value problem of the sunflower equation, J. Math. Anal. Appl., 143 (1989), 471-479.
doi: 10.1016/0022-247X(89)90053-X. |
[24] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, New York, 1962. |
[25] |
P. B. Reddy and and P. Sannuti, Optimal control of a coupled-core nuclear reactor by singular perturbation method, IEEE Trans. Automat. Control, 20 (1975), 766-769. Google Scholar |
[26] |
P. Sannuti,
On the controllability of singularly perturbed systems, IEEE Trans. Automat. Control, 22 (1977), 622-624.
doi: 10.1109/tac.1977.1101568. |
[27] |
P. Sannuti,
On the controllability of some singularly perturbed nonlinear systems, J. Math. Anal. Appl., 64 (1978), 579-591.
doi: 10.1016/0022-247X(78)90006-9. |
[28] |
E. Schöll, G. Hiller, P. Hövel and M. A. Dahlem,
Time-delayed feedback in neurosystems, Phil. Trans. R. Soc. A, 367 (2009), 1079-1096.
doi: 10.1098/rsta.2008.0258. |
[29] |
N. Stefanovic and L. Pavel, A Lyapunov-Krasovskii stability analysis for game-theoretic based power control in optical links, Telecommun. Syst., 47 (2011), 19-33. Google Scholar |
[30] |
O. Tsekhan, Complete controllability conditions for linear singularly perturbed time-invariant systems with multiple delays via Chang-type transformation, Axioms, 8 (2019), 1-19. Google Scholar |
[31] |
Y. Zhang, D. S. Naidu, C. Cai and Y. Zou, Singular perturbations and time scales in control theories and applications: an overview 2002–2012, Int. J. Inf. Syst. Sci. 9 (2014), 1-36. |
[1] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[2] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[3] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[4] |
Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113 |
[5] |
Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052 |
[6] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[7] |
Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353 |
[8] |
Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 |
[9] |
Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279 |
[10] |
Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020375 |
[11] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
[12] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[13] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[14] |
Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65 |
[15] |
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020341 |
[16] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[17] |
Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, 2021, 20 (2) : 801-815. doi: 10.3934/cpaa.2020291 |
[18] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[19] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
[20] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
Impact Factor:
Tools
Article outline
[Back to Top]