
-
Previous Article
Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation
- NACO Home
- This Issue
-
Next Article
Comparison between Taylor and perturbed method for Volterra integral equation of the first kind
Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks
1. | Department of Mathematics, University of Bonab, Bonab, Iran |
2. | Department of Computer Engineering, University of Bonab, Bonab, Iran |
In a grid network, the nodes could be traversed either horizontally or vertically. The constrained shortest Hamiltonian path goes over the nodes between a source node and a destination node, and it is constrained to traverse some nodes at least once while others could be traversed several times. There are various applications of the problem, especially in routing problems. It is an NP-complete problem, and the well-known Bellman-Held-Karp algorithm could solve the shortest Hamiltonian circuit problem within $ {\rm O(}{{\rm 2}}^{{\rm n}}{{\rm n}}^{{\rm 2}}{\rm )} $ time complexity; however, the shortest Hamiltonian path problem is more complicated. So, a metaheuristic algorithm based on ant colony optimization is applied to obtain the optimal solution. The proposed method applies the rooted shortest path tree structure since in the optimal solution the paths between the restricted nodes are the shortest paths. Then, the shortest path tree is obtained by at most $ {\rm O(}{{\rm n}}^{{\rm 3}}{\rm )} $ time complexity at any iteration and the ants begin to improve the solution and the optimal solution is constructed in a reasonable time. The algorithm is verified by some numerical examples and the ant colony parameters are tuned by design of experiment method, and the optimal setting for different size of networks are determined.
References:
[1] |
R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, 1$^st$ edition, Prentice hall, New York, 1993. |
[2] |
M. M. Alipour and S. N. Razavi, A new multiagent reinforcement learning algorithm to solve the symmetric traveling salesman problem, Multiagent Grid Syst., 11 (2015), 107-119. Google Scholar |
[3] |
M. M. Alipour, S. N. Razavi, M. R. Feizi Derakhshi and M. A. Balafar, A hybrid algorithm using a genetic algorithm and multiagent reinforcement learning heuristic to solve the traveling salesman problem, Neural Comput. Appl., 30 (2018), 2935-2951. Google Scholar |
[4] |
B. Appleton and C. Sun, Circular shortest paths by branch and bound, Pattern Recognit., 36 (2003), 2513-2520. Google Scholar |
[5] |
A. A. Bertossi,
The edge Hamiltonian path problem is NP-complete, Inf. Process. Lett., 13 (1981), 157-159.
doi: 10.1016/0020-0190(81)90048-X. |
[6] |
B. Bontoux, C. Artigues and D. Feillet,
A memetic algorithm with a large neighborhood crossover operator for the generalized traveling salesman problem, Comput. Oper. Res., 37 (2010), 1844-1852.
doi: 10.1016/j.cor.2009.05.004. |
[7] |
G. A. Bula, C. Prodhon, F. A. Gonzalez, H. M. Afsar and N. Velasco, Variable neighborhood search to solve the vehicle routing problem for hazardous materials transportation, J. Hazard. Mater., 324 (2017), 472-480. Google Scholar |
[8] |
E. Cao, M. Lai and H. Yang, Open vehicle routing problem with demand uncertainty and its robust strategies, Expert Syst. Appl., 41 (2014), 3569-3575. Google Scholar |
[9] |
T. S. Chang, Y. W. Wan and W. T. Ooi,
A stochastic dynamic traveling salesman problem with hard time windows, Eur. J. Oper. Res., 198 (2009), 748-759.
doi: 10.1016/j.ejor.2008.10.012. |
[10] |
S. S. Choong, L. P. Wong and C. P. Lim, An artificial bee colony algorithm with a modified choice function for the traveling salesman problem, Swarm Evol. Comput., 44 (2019), 622-635. Google Scholar |
[11] |
A. Colorni, M. Dorigo, V. Maniezzo, D. Elettronica and P. Milano, Distributed optimization by ant colonies, The 1991 European Conference on Artificial Life, (1991), 134–142. Google Scholar |
[12] |
D. Ferone, P. Festa, F. Guerriero and D. Laganá,
The constrained shortest path tour problem, Comput. Oper. Res., 74 (2016), 64-77.
doi: 10.1016/j.cor.2016.04.002. |
[13] |
D. Ferone, P. Festa, F. Guerriero and D. Laganá,
An integer linear programming model for the constrained shortest path tour problem, Electron. Notes Discret. Math., 69 (2018), 141-148.
doi: 10.1016/j.endm.2018.07.019. |
[14] |
A. Gunawan, H. C. Lau and Li ndawati, Fine-tuning algorithm parameters using the design of experiments approach, Lect. Notes Comput. Sci., 6683 (2011), 278-292. Google Scholar |
[15] |
M. Held and R. M. Karp,
A dynamic programming approach to sequencing problems, J. Soc. Ind. Appl. Math., 10 (1962), 196-210.
|
[16] |
J. Jana and S. Kumar Roy, Solution of matrix games with generalised trapezoidal fuzzy payoffs, Fuzzy Inf. Eng., 10 (2018), 213-224. Google Scholar |
[17] |
J. Jana and S. K. Roy, Dual hesitant fuzzy matrix games: based on new similarity measure, Soft Comput., 23 (2019), 8873-8886. Google Scholar |
[18] |
M. Kuby, O. M. Araz, M. Palmer and I. Capar, An efficient online mapping tool for finding the shortest feasible path for alternative-fuel vehicles, Int. J. Hydrogen Energy, 39 (2014), 18433-18439. Google Scholar |
[19] |
S. Kumar Roy, M. Pervin and G. Wilhelm Weber, Imperfection with inspection policy and variable demand under trade-credit: a deteriorating inventory model, Numer. Algebr. Control Optim., 10 (2020), 45-74. Google Scholar |
[20] |
T. H. Lai and S. S. Wei,
The edge Hamiltonian path problem is NP-complete for bipartite graphs, Inf. Process. Lett., 46 (1993), 21-26.
doi: 10.1016/0020-0190(93)90191-B. |
[21] |
C. P. Lam, J. Xiao and H. Li, Ant colony optimisation for generation of conformance testing sequences using characterising sequences, The 3rd IASTED International Conference on Advances in Computer Science and Technology (ACS2007), (2007), 140–146. Google Scholar |
[22] |
E. B. De Lima, G. L. Pappa, J. M. De Almeida, M. A. Goncalves and W. Meira, Tuning genetic programming parameters with factorial designs, IEEE World Congr. Comput. Intell., IEEE Congr. Evol. Comput. 2010. Google Scholar |
[23] |
Y. H. Liu,
Different initial solution generators in genetic algorithms for solving the probabilistic traveling salesman problem, Appl. Math. Comput., 216 (2010), 125-137.
doi: 10.1016/j.amc.2010.01.021. |
[24] |
S. de Mesquita, A. R. Backes and P. Cortez,
Texture analysis and classification using shortest paths in graphs, Pattern Recognit. Lett., 34 (2013), 1314-1319.
doi: 10.1109/TIP.2014.2333655. |
[25] |
M. Mobin, S. M. Mousavi, M. Komaki and M. Tavana, A hybrid desirability function approach for tuning parameters in evolutionary optimization algorithms, Meas. J. Int. Meas. Confed., 114 (2018), 417-427. Google Scholar |
[26] |
D. C. Montgomery, Design And Analysis of Experiments, 5$^th$ edition, Wiley, New York, 1984. |
[27] |
C. M. Papadimitriou, Computational Complexity, 1$^st$ edition, Addison-Wesley, New York, 1994. |
[28] |
M. Pervin, S. K. Roy and G. W. Weber,
A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items, Numer. Algebr. Control Optim., 7 (2017), 21-50.
doi: 10.3934/naco.2017002. |
[29] |
M. Pervin, S. K. Roy and G. W. Weber,
An integrated inventory model with variable holding cost under two levels of trade-credit policy, Numer. Algebr. Control Optim., 8 (2018), 169-191.
doi: 10.3934/naco.2018010. |
[30] |
B. Richard,
Dynamic programming treatment of the travelling salesman problem, J. Assoc. Comput. Mach., 9 (1962), 61-63.
doi: 10.1145/321105.321111. |
[31] |
E. Ridge and D. Kudenko, Tuning an algorithm using design of experiments, Experimental Methods for the Analysis of Optimization Algorithms, (eds. T. Bartz-Beielstein, M. Chiarandini, L. Paquete and M. Preuss), Springer, New York, (2010), 265–286.
doi: 10.1007/978-3-642-02538-9. |
[32] |
M. Salari, M. Reihaneh and M. S. Sabbagh, Combining ant colony optimization algorithm and dynamic programming technique for solving the covering salesman problem, Comput. Ind. Eng., 83 (2015), 244-251. Google Scholar |
[33] |
R. De Santis, R. Montanari, G. Vignali and E. Bottani,
An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses, Eur. J. Oper. Res., 267 (2018), 120-137.
doi: 10.1016/j.ejor.2017.11.017. |
[34] |
V. Saw, A. Rahman and W. E. Ong, Shortest path problem on a grid network with unordered intermediate points, J. Phys. Conf. Ser., 893 (2017).
doi: 10.1088/1742-6596/893/1/012066. |
[35] |
P. I. Stetsyuk,
Problem statements for k-node shortest path and k-node shortest cycle in a complete graph, Cybern. Syst. Anal., 52 (2016), 71-75.
doi: 10.1007/s10559-016-9801-x. |
[36] |
D. Sudholt and C. Thyssen,
Running time analysis of ant colony optimization for shortest path problems, J. Discret. Algorithms, 10 (2012), 165-180.
doi: 10.1016/j.jda.2011.06.002. |
[37] |
D. Sudholt and C. Thyssen,
A simple ant colony optimizer for stochastic shortest path problems, Algorithmica, 64 (2012), 643-672.
doi: 10.1007/s00453-011-9606-2. |
[38] |
T. Vidal, M. Battarra, A. Subramanian and G. Erdogan,
Hybrid metaheuristics for the clustered vehicle routing problem, Comput. Oper. Res., 58 (2015), 87-99.
doi: 10.1016/j.cor.2014.10.019. |
[39] |
Y. Wang, The hybrid genetic algorithm with two local optimization strategies for traveling salesman problem, Comput. Ind. Eng., 70 (2014), 124-133. Google Scholar |
[40] |
J. Xiao, Y. Zhang, X. Jia and X. Zhou, A schedule of join operations to reduce I/O cost in spatial database systems, Data Knowl. Eng., 35 (2000), 299-317. Google Scholar |
[41] |
J. Yang, X. Shi, M. Marchese and Y. Liang,
Ant colony optimization method for generalized TSP problem, Prog. Nat. Sci., 18 (2008), 1417-1422.
doi: 10.1016/j.pnsc.2008.03.028. |
show all references
References:
[1] |
R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, 1$^st$ edition, Prentice hall, New York, 1993. |
[2] |
M. M. Alipour and S. N. Razavi, A new multiagent reinforcement learning algorithm to solve the symmetric traveling salesman problem, Multiagent Grid Syst., 11 (2015), 107-119. Google Scholar |
[3] |
M. M. Alipour, S. N. Razavi, M. R. Feizi Derakhshi and M. A. Balafar, A hybrid algorithm using a genetic algorithm and multiagent reinforcement learning heuristic to solve the traveling salesman problem, Neural Comput. Appl., 30 (2018), 2935-2951. Google Scholar |
[4] |
B. Appleton and C. Sun, Circular shortest paths by branch and bound, Pattern Recognit., 36 (2003), 2513-2520. Google Scholar |
[5] |
A. A. Bertossi,
The edge Hamiltonian path problem is NP-complete, Inf. Process. Lett., 13 (1981), 157-159.
doi: 10.1016/0020-0190(81)90048-X. |
[6] |
B. Bontoux, C. Artigues and D. Feillet,
A memetic algorithm with a large neighborhood crossover operator for the generalized traveling salesman problem, Comput. Oper. Res., 37 (2010), 1844-1852.
doi: 10.1016/j.cor.2009.05.004. |
[7] |
G. A. Bula, C. Prodhon, F. A. Gonzalez, H. M. Afsar and N. Velasco, Variable neighborhood search to solve the vehicle routing problem for hazardous materials transportation, J. Hazard. Mater., 324 (2017), 472-480. Google Scholar |
[8] |
E. Cao, M. Lai and H. Yang, Open vehicle routing problem with demand uncertainty and its robust strategies, Expert Syst. Appl., 41 (2014), 3569-3575. Google Scholar |
[9] |
T. S. Chang, Y. W. Wan and W. T. Ooi,
A stochastic dynamic traveling salesman problem with hard time windows, Eur. J. Oper. Res., 198 (2009), 748-759.
doi: 10.1016/j.ejor.2008.10.012. |
[10] |
S. S. Choong, L. P. Wong and C. P. Lim, An artificial bee colony algorithm with a modified choice function for the traveling salesman problem, Swarm Evol. Comput., 44 (2019), 622-635. Google Scholar |
[11] |
A. Colorni, M. Dorigo, V. Maniezzo, D. Elettronica and P. Milano, Distributed optimization by ant colonies, The 1991 European Conference on Artificial Life, (1991), 134–142. Google Scholar |
[12] |
D. Ferone, P. Festa, F. Guerriero and D. Laganá,
The constrained shortest path tour problem, Comput. Oper. Res., 74 (2016), 64-77.
doi: 10.1016/j.cor.2016.04.002. |
[13] |
D. Ferone, P. Festa, F. Guerriero and D. Laganá,
An integer linear programming model for the constrained shortest path tour problem, Electron. Notes Discret. Math., 69 (2018), 141-148.
doi: 10.1016/j.endm.2018.07.019. |
[14] |
A. Gunawan, H. C. Lau and Li ndawati, Fine-tuning algorithm parameters using the design of experiments approach, Lect. Notes Comput. Sci., 6683 (2011), 278-292. Google Scholar |
[15] |
M. Held and R. M. Karp,
A dynamic programming approach to sequencing problems, J. Soc. Ind. Appl. Math., 10 (1962), 196-210.
|
[16] |
J. Jana and S. Kumar Roy, Solution of matrix games with generalised trapezoidal fuzzy payoffs, Fuzzy Inf. Eng., 10 (2018), 213-224. Google Scholar |
[17] |
J. Jana and S. K. Roy, Dual hesitant fuzzy matrix games: based on new similarity measure, Soft Comput., 23 (2019), 8873-8886. Google Scholar |
[18] |
M. Kuby, O. M. Araz, M. Palmer and I. Capar, An efficient online mapping tool for finding the shortest feasible path for alternative-fuel vehicles, Int. J. Hydrogen Energy, 39 (2014), 18433-18439. Google Scholar |
[19] |
S. Kumar Roy, M. Pervin and G. Wilhelm Weber, Imperfection with inspection policy and variable demand under trade-credit: a deteriorating inventory model, Numer. Algebr. Control Optim., 10 (2020), 45-74. Google Scholar |
[20] |
T. H. Lai and S. S. Wei,
The edge Hamiltonian path problem is NP-complete for bipartite graphs, Inf. Process. Lett., 46 (1993), 21-26.
doi: 10.1016/0020-0190(93)90191-B. |
[21] |
C. P. Lam, J. Xiao and H. Li, Ant colony optimisation for generation of conformance testing sequences using characterising sequences, The 3rd IASTED International Conference on Advances in Computer Science and Technology (ACS2007), (2007), 140–146. Google Scholar |
[22] |
E. B. De Lima, G. L. Pappa, J. M. De Almeida, M. A. Goncalves and W. Meira, Tuning genetic programming parameters with factorial designs, IEEE World Congr. Comput. Intell., IEEE Congr. Evol. Comput. 2010. Google Scholar |
[23] |
Y. H. Liu,
Different initial solution generators in genetic algorithms for solving the probabilistic traveling salesman problem, Appl. Math. Comput., 216 (2010), 125-137.
doi: 10.1016/j.amc.2010.01.021. |
[24] |
S. de Mesquita, A. R. Backes and P. Cortez,
Texture analysis and classification using shortest paths in graphs, Pattern Recognit. Lett., 34 (2013), 1314-1319.
doi: 10.1109/TIP.2014.2333655. |
[25] |
M. Mobin, S. M. Mousavi, M. Komaki and M. Tavana, A hybrid desirability function approach for tuning parameters in evolutionary optimization algorithms, Meas. J. Int. Meas. Confed., 114 (2018), 417-427. Google Scholar |
[26] |
D. C. Montgomery, Design And Analysis of Experiments, 5$^th$ edition, Wiley, New York, 1984. |
[27] |
C. M. Papadimitriou, Computational Complexity, 1$^st$ edition, Addison-Wesley, New York, 1994. |
[28] |
M. Pervin, S. K. Roy and G. W. Weber,
A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items, Numer. Algebr. Control Optim., 7 (2017), 21-50.
doi: 10.3934/naco.2017002. |
[29] |
M. Pervin, S. K. Roy and G. W. Weber,
An integrated inventory model with variable holding cost under two levels of trade-credit policy, Numer. Algebr. Control Optim., 8 (2018), 169-191.
doi: 10.3934/naco.2018010. |
[30] |
B. Richard,
Dynamic programming treatment of the travelling salesman problem, J. Assoc. Comput. Mach., 9 (1962), 61-63.
doi: 10.1145/321105.321111. |
[31] |
E. Ridge and D. Kudenko, Tuning an algorithm using design of experiments, Experimental Methods for the Analysis of Optimization Algorithms, (eds. T. Bartz-Beielstein, M. Chiarandini, L. Paquete and M. Preuss), Springer, New York, (2010), 265–286.
doi: 10.1007/978-3-642-02538-9. |
[32] |
M. Salari, M. Reihaneh and M. S. Sabbagh, Combining ant colony optimization algorithm and dynamic programming technique for solving the covering salesman problem, Comput. Ind. Eng., 83 (2015), 244-251. Google Scholar |
[33] |
R. De Santis, R. Montanari, G. Vignali and E. Bottani,
An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses, Eur. J. Oper. Res., 267 (2018), 120-137.
doi: 10.1016/j.ejor.2017.11.017. |
[34] |
V. Saw, A. Rahman and W. E. Ong, Shortest path problem on a grid network with unordered intermediate points, J. Phys. Conf. Ser., 893 (2017).
doi: 10.1088/1742-6596/893/1/012066. |
[35] |
P. I. Stetsyuk,
Problem statements for k-node shortest path and k-node shortest cycle in a complete graph, Cybern. Syst. Anal., 52 (2016), 71-75.
doi: 10.1007/s10559-016-9801-x. |
[36] |
D. Sudholt and C. Thyssen,
Running time analysis of ant colony optimization for shortest path problems, J. Discret. Algorithms, 10 (2012), 165-180.
doi: 10.1016/j.jda.2011.06.002. |
[37] |
D. Sudholt and C. Thyssen,
A simple ant colony optimizer for stochastic shortest path problems, Algorithmica, 64 (2012), 643-672.
doi: 10.1007/s00453-011-9606-2. |
[38] |
T. Vidal, M. Battarra, A. Subramanian and G. Erdogan,
Hybrid metaheuristics for the clustered vehicle routing problem, Comput. Oper. Res., 58 (2015), 87-99.
doi: 10.1016/j.cor.2014.10.019. |
[39] |
Y. Wang, The hybrid genetic algorithm with two local optimization strategies for traveling salesman problem, Comput. Ind. Eng., 70 (2014), 124-133. Google Scholar |
[40] |
J. Xiao, Y. Zhang, X. Jia and X. Zhou, A schedule of join operations to reduce I/O cost in spatial database systems, Data Knowl. Eng., 35 (2000), 299-317. Google Scholar |
[41] |
J. Yang, X. Shi, M. Marchese and Y. Liang,
Ant colony optimization method for generalized TSP problem, Prog. Nat. Sci., 18 (2008), 1417-1422.
doi: 10.1016/j.pnsc.2008.03.028. |








factors | levels | |||
-1 | 0 | 1 | ||
A | 1 | 7 | 13 | |
B | 0 | 6 | 13 | |
C | 1 | 2 | 4 | |
D | 0.1 | 0.5 | 0.9 | |
E | 0.01 | 0.5 | 0.99 | |
F | initial solution | RO | NN1 | NN2 |
G | ant number | 0.5 | 1 | 1.5 |
Blocks | instance size | small | moderate | large |
factors | levels | |||
-1 | 0 | 1 | ||
A | 1 | 7 | 13 | |
B | 0 | 6 | 13 | |
C | 1 | 2 | 4 | |
D | 0.1 | 0.5 | 0.9 | |
E | 0.01 | 0.5 | 0.99 | |
F | initial solution | RO | NN1 | NN2 |
G | ant number | 0.5 | 1 | 1.5 |
Blocks | instance size | small | moderate | large |
network size | factors | initial solution | ant number | desirability value | |||||
100 |
optimal coded | 1 | -1 | 1 | -1 | -0.68 | 0.05 | -0.98 | 0.9640 |
optimal uncoded | 13 | 0 | 4 | 0.1 | 0.17 | NN1 | 0.5 | ||
200 |
optimal coded | -1 | -1 | -0.99 | -0.70 | 0.68 | -0.04 | -1 | 0.9957 |
optimal uncoded | 1 | 0 | 1 | 0.22 | 0.83 | NN1 | 0.5 | ||
400 |
optimal coded | -1 | -0.54 | -1 | 1 | 1 | 0.15 | -1 | 0.8996 |
optimal uncoded | 1 | 3 | 1 | 0.9 | 0.99 | NN1 | 0.5 |
network size | factors | initial solution | ant number | desirability value | |||||
100 |
optimal coded | 1 | -1 | 1 | -1 | -0.68 | 0.05 | -0.98 | 0.9640 |
optimal uncoded | 13 | 0 | 4 | 0.1 | 0.17 | NN1 | 0.5 | ||
200 |
optimal coded | -1 | -1 | -0.99 | -0.70 | 0.68 | -0.04 | -1 | 0.9957 |
optimal uncoded | 1 | 0 | 1 | 0.22 | 0.83 | NN1 | 0.5 | ||
400 |
optimal coded | -1 | -0.54 | -1 | 1 | 1 | 0.15 | -1 | 0.8996 |
optimal uncoded | 1 | 3 | 1 | 0.9 | 0.99 | NN1 | 0.5 |
Network | Response | Fit | SE Fit | 95% CI | 95% PI |
100 |
Improve | 0.2970 | 0.0848 | (0.1226, 0.4713) | (0.0829, 0.5111) |
CPU Time | 18 | 10.1 | (-2.8, 38.8) | (-7.6, 43.5) | |
Opt. Sol. | 3608 | 318 | (2954, 4262) | (2804, 4412) | |
200 |
Improve | 0.2119 | 0.0534 | (0.1020, 0.3217) | (0.0724, 0.3513) |
CPU Time | 161.25 | 4.77 | (151.44,171.05) | (148.80,173.69) | |
Opt. Sol. | 13719 | 654 | (12375, 15063) | (12013, 15425) | |
400 |
Improve | 0.1605 | 0.0413 | (0.0756, 0.2454) | (0.0555, 0.2655) |
CPU Time | 1763 | 647 | (434, 3092) | (119, 3407) | |
Opt. Sol. | 54087 | 1726 | (50540, 57634) | (49699, 58474) |
Network | Response | Fit | SE Fit | 95% CI | 95% PI |
100 |
Improve | 0.2970 | 0.0848 | (0.1226, 0.4713) | (0.0829, 0.5111) |
CPU Time | 18 | 10.1 | (-2.8, 38.8) | (-7.6, 43.5) | |
Opt. Sol. | 3608 | 318 | (2954, 4262) | (2804, 4412) | |
200 |
Improve | 0.2119 | 0.0534 | (0.1020, 0.3217) | (0.0724, 0.3513) |
CPU Time | 161.25 | 4.77 | (151.44,171.05) | (148.80,173.69) | |
Opt. Sol. | 13719 | 654 | (12375, 15063) | (12013, 15425) | |
400 |
Improve | 0.1605 | 0.0413 | (0.0756, 0.2454) | (0.0555, 0.2655) |
CPU Time | 1763 | 647 | (434, 3092) | (119, 3407) | |
Opt. Sol. | 54087 | 1726 | (50540, 57634) | (49699, 58474) |
[1] |
C. J. Price. A modified Nelder-Mead barrier method for constrained optimization. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020058 |
[2] |
Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076 |
[3] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[4] |
Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045 |
[5] |
Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139 |
[6] |
Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135 |
[7] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[8] |
Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101 |
[9] |
Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165 |
[10] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[11] |
Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033 |
[12] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[13] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[14] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2021001 |
[15] |
Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020336 |
[16] |
Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072 |
[17] |
Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020366 |
[18] |
Hongyu Cheng, Shimin Wang. Response solutions to harmonic oscillators beyond multi–dimensional brjuno frequency. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020222 |
[19] |
Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350 |
[20] |
He Zhang, John Harlim, Xiantao Li. Estimating linear response statistics using orthogonal polynomials: An RKHS formulation. Foundations of Data Science, 2020, 2 (4) : 443-485. doi: 10.3934/fods.2020021 |
Impact Factor:
Tools
Article outline
Figures and Tables
[Back to Top]