\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Neuro-fuzzy active control optimized by Tug of war optimization method for seismically excited benchmark highway bridge

  • * Corresponding author: Mostafa Ghelichi

    * Corresponding author: Mostafa Ghelichi 

The authors are supported by Babol Noshirvani university grant BNUT/370680/97

Abstract / Introduction Full Text(HTML) Figure(14) / Table(5) Related Papers Cited by
  • Control algorithms can affect the performance and cost-effectiveness of the control system of a structure. This study presents an active neuro-fuzzy optimized control algorithm based on a new optimization method taken from Tug of War competition, which is highly efficient for civil structures. The performance of the proposed control method has been evaluated on the finite element model of a nonlinear highway benchmark bridge; which is consisted of nonlinear structural elements and isolation bearings and equipped with hydraulic actuators. The nonlinear control rules are approximated with a five-layer optimized neural network which transmits instructions to the actuators installed between the deck and abutments. The stability of control laws are obtained based on Lyapunov theory. The performance of the proposed algorithm in controlling bridge structural responses is investigated in six different earthquakes. The results are presented in terms of a well-defined set of performance indices that are comparable to previous methods. The results show that despite the simple description of nonlinearities and non-detailed structural information, the proposed control method can effectively reduce the performance indices of the structure. The application of artificial neural networks is a privilege, which in so far as which, despite their simplicity, they have significant effects even on complex structures such as nonlinear highway bridges.

    Mathematics Subject Classification: Primary: 93C42; Secondary: 47N10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Elevation and plan views of $ 91/5 $ over-crossing[1]

    Figure 2.  Finite element model of the bridge

    Figure 3.  Tug of war tournament

    Figure 4.  An idealized framework of tug of war [20]

    Figure 5.  Membership functions of earthquake observer

    Figure 6.  Input membership functions in ANFIS controller (Normalized displacement or Normalized acceleration)

    Figure 7.  ANFIS configuration of the proposed controller

    Figure 8.  The applied methodology to design a nero-fuzzy optimized controller

    Figure 9.  F-ANFIS controller optimization under N.P.Spr. earthquake with a factor of 1.5 and J1 index

    Figure 10.  N-ANFIS controller optimization under Northridge earthquake with a factor of 1.5 and J1 index

    Figure 11.  The J1 index comparison among the different control methods

    Figure 12.  The J3 index comparison among the different control methods

    Figure 13.  The J4 index comparison among the different control methods

    Figure 14.  A view of the results of the Friedman's test

    Table 1.  Input membership functions parameters in ANFIS controller

    N1 N2 N3 P1 P2 P3
    $ \sigma $ 0.15 0.15 0.15 0.15 0.15 0.15
    C -1.0 -0.6 -0.2 0.2 0.6 1.0
     | Show Table
    DownLoad: CSV

    Table 2.  The mean of criteria J1, J3 and J5 in a far-field earthquake, for different optimization scenarios of ANFIS controller (F-ANFIS)

    Optimization by minimizing criterion J1
    Earthquake EL-Ce$ \times $1 EL-Ce$ \times $1.5 N.P.Spr.$ \times $1 N.P.Spr.$ \times $1.5
    J1 1.1198 1.1153 0.8942 0.8867
    J3 0.6153 0.5235 0.8856 0.8171
    J5 0.3586 0.2684 0.6125 0.5928
    Optimization by minimizing criterion J4
    Earthquake EL-Ce$ \times $1 EL-Ce$ \times $1.5 N.P.Spr.$ \times $1 N.P.Spr.$ \times $1.5
    J1 1.1336 1.1295 0.8895 0.9459
    J3 0.5983 0.5467 0.8763 0.8543
    J5 0.3347 0.2733 0.5826 0.6372
     | Show Table
    DownLoad: CSV

    Table 3.  The mean of criteria J1, J3 and J5 in a Near-field earthquake, for different optimization scenarios of ANFIS controller (N-ANFIS).

    Optimization by minimizing criterion J1
    Earthquake Northridge$ \times $1 Northridge$ \times $1.5
    J1 0.7321 0.7125
    J3 0.3988 0.3846
    J5 0.3833 0.3644
    Optimization by minimizing criterion J4
    Earthquake Northridge$ \times $1 Northridge$ \times $1.5
    J1 0.7466 0.7389
    J3 0.4038 0.6089
    J5 0.3957 0.4782
     | Show Table
    DownLoad: CSV

    Table 4.  The results of the proposed controller

    NPalmspr ChiChi El Centro Northridge TurkBolu Kobe-NIS Avg
    J1:Pk. base Shear 0.925 0.652 0.678 0.729 0.697 0.892 0.762
    J2:Pk. Over.Mom. 0.693 0.878 0.595 0.786 0.587 0.547 0.681
    J3:Pk. Mid. Disp. 0.684 0.701 0.667 0.572 0.661 0.607 0.648
    J4: Pk. Mid. Acc. 0.997 0.912 0.788 0.783 0.812 0.822 0.852
    J5: Pk. Bear. Def. 0.546 0.554 0.563 0.514 0.605 0.451 0.538
    J6: Pk. Ductility 0.647 0.517 0.576 0.547 0.186 0.585 0.509
    J7: Dis. Energy 0.000 0.087 0.000 0.120 0.05 0.000 0.042
    J8: Plas. Connect. 0.000 0.500 0.000 0.500 0.000 0.000 0.166
    J9:Nor.Base shear 0.839 0.567 0.610 0.594 0.743 0.718 0.678
    J10:Nor.Over. Mom. 0.561 0.597 0.642 0.686 0.459 0.745 0.615
    J11: Nor. Mid. Disp. 0.611 0.487 0.504 0.473 0.514 0.639 0.538
    J12: Nor. Mid. Acc. 0.798 0.694 0.568 0.681 0.842 0.765 0.724
    J13: Nor. Bear. Def. 0.397 0.456 0.415 0.616 0.214 0.324 0.404
    J14: Nor. Ductility 0.615 0.623 0.561 0.802 0.123 0.683 0.567
    J15: Pk. Con. Force 0.010 0.024 0.007 0.025 0.018 0.012 0.016
    J16: Pk. Stroke 0.509 0.517 0.518 0.452 0.580 0.451 0.504
    J17: Pk. Power 0.037 0.110 0.024 0.098 0.077 0.029 0.063
    J18: Total Power 0.010 0.014 0.005 0.017 0.015 0.015 0.012
    J19:No.Con. Devices 16 16 16 16 16 16 16
    J20: No. Sensors 12 12 12 12 12 12 12
    J21:Comp. Resources 16 16 16 16 16 16 16
     | Show Table
    DownLoad: CSV

    Table 5.  Results of the Friedman's test

    Responce indices Friedman's mean rank $ P $ value
    ATF P-SAMP A-SAMP A-ANF SA-CLOP SA-AFSMC
    J1 1.6 5.2 5.6 1.8 4 2.8 8.95E-04
    J2 1.2 1.8 4.6 5.4 4.4 3.6 1.10E-03
    J3 1.4 1.6 5 4.7 4.7 3.6 2.00E-03
    J4 3.8 5.9 1.4 1.7 3.2 5 3.34E-04
    J5 2 1.8 5.5 5.5 4 2.2 2.16E-04
    J6 1.2 1.8 5.5 3.9 5.3 3.3 4.07E-04
    J7 1.4 1.6 4.9 5.6 4.5 3 3.80E-04
    J8 1.2 1.8 4.1 4.8 3.5 5.6 4.95E-04
    J9 2.9 1.9 4.3 4.6 4.1 3.2 1.67E-01
    J10 2 2 5 6 4 2 3.78E-04
    J11 1.4 1.6 5.5 3.9 5 3.6 7.31E-04
    J12 1.4 5.7 2.1 2.5 4 5.3 3.87E-04
    J13 2.6 1 5 6 4 2.4 1.89E-04
    J14 3.3 2.9 6 2.8 5 1 4.02E-04
    J15 5.3 5 1.5 2 2.7 4.5 4.02E-04
    J16 2.2 1 5 6 4 2.8 4.02E-04
    Average 2.18 2.66 4.43 4.20 4.15 3.38
    SD 1.15 1.72 1.46 1.58 0.67 1.25
     | Show Table
    DownLoad: CSV
  • [1] A. K. AgrawalP. TanS. Nagarajaiah and J. Zhang, Benchmark structural control problem for a seismically excited highway bridge-Part Ⅰ: Phase Ⅰ Problem definition, Struct. Control Heal. Monit., 16 (2009), 509-529. 
    [2] S. Ali, Semi-active Control of Earthquake Induced Vibrations in Structures Using Mr Dampers : Algorithm Development, Experimental Verification and Benchmark Applications, Ph.D thesis, Indian Institute of Science, Bangalore, 560 012, 2008.
    [3] J. M. CaicedoS. J. DykeS. J. MoonL. A. BergmanG. Turan and S. Hague, Phase Ⅱ benchmark control problem for seismic response of cable-stayed bridges, Earthq. Eng. Eng. Vib., 16 (2017), 827-840. 
    [4] M. DehghaniA. Seifi and H. Riahi-Madvar, Novel forecasting models for immediate-short-term to long-term influent flow prediction by combining ANFIS and grey wolf optimization, J. Hydrol., 576 (2019), 698-725. 
    [5] S. J. DykeJ. M. CaicedoG. TuranL. A. Bergman and S. Hague, Phase Ⅰ benchmark control system for seismic response of cable-stayed bridges, J. Struct. Eng., 129 (2003), 857-872. 
    [6] R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 12 (1995), 39-43.
    [7] O. K. Erol and I. Eksin, A new optimization method: Big BangBig Crunch, Adv. Eng. Softw., 37 (2006), 106-111. 
    [8] H. Ghaffarzadeh, Semi-active structural fuzzy control with MR dampers subjected to near-fault ground motions having forward directivity and fling step, Smart Struct. Syst., 12 (2013), 595-617. 
    [9] A. GoliH. Khademi ZarehR. Tavakkoli-Moghaddam and A. Sadeghieh, A comprehensive model of demand prediction based on hybrid artificial intelligence and metaheuristic algorithms: A case study in dairy industry, Int. J. Ind. Syst. Eng., 11 (2018), 190-203. 
    [10] M. S. Gonalves, R. H. Lopez and L. F. F. Miguel, Search group algorithm: A new metaheuristic method for the optimization of truss structures, Comput. Struct., 153 (2015), 165-184.
    [11] G. HeoC. KimS. JeonC. Lee and J. Jeon, A hybrid seismic response control to improve performance of a two-span bridge, Struct. Eng. Mech., 61 (2009), 675-684. 
    [12] R. S. Jangid and J. M. Kelly, Base isolation for near-fault motions, Earthq. Eng. Struct. Dyn., 35 (2001), 691-707. 
    [13] S. JaypuriaM. T. Ranjan and O. Jaypuria, Metaheuristic tuned ANFIS model for input-output modeling of friction stir welding, Materials Today: Proceedings, 18 (2019), 3922-3930. 
    [14] A. A. Kalteh and S. Babouei, Control chart patterns recognition using ANFIS with new training algorithm and intelligent utilization of shape and statistical features, ISA Transactions, 1 (2019).
    [15] A. Kaveh and N. Khayatazad, A new meta-heuristic method: ray optimization, Comput. Struct., 59 (2012), 283-294. 
    [16] A. KavehS. M. Motie and M. Moslehi, Magnetic charged system search: a new meta-heuristic algorithm for optimization, Acta Mech., 224 (2014), 85-107. 
    [17] A. Kaveh and N. Farhoudi, A new optimization method: dolphin echolocation, Adv. Eng. Softw., 59 (2013), 53-70. 
    [18] A. Kaveh and A. Zolghadr, Democratic PSO for truss layout and size optimization with frequency constraints, Comput. Struct., 130 (2014), 10-21. 
    [19] A. Kaveh and V. R. Mahdavi, Colliding bodies optimization: a novel meta-heuristic method, Comput. Struct., 139 (2014), 18-27.  doi: 10.1007/978-3-319-19659-6.
    [20] A. Kaveh and A. Zolghadr, A novel meta-heuristic algorithm: TUG OF WAR optimization, Iran Univ. Sci. Technol., 6 (2014), 469-492. 
    [21] S. Khalilpourazari and S. Khalilpourazari, Optimization of time, cost and surface roughness in grinding process using a robust multi-objective dragonfly algorithm, Neural Comput. Appl., 1 (2018), 1-12. 
    [22] S. Khalilpourazari and H. R. Pasandideh, Modeling and optimization of multi-item multi-constrained EOQ model for growing items, Knowl-Based Syst., 164 (2019), 150-162. 
    [23] S. KhalilpourazariH. R. PasandidehH. R. Niaki and S. T. Akhavan, Optimizing a multi-item economic order quantity problem with imperfect items, inspection errors, and backorders, Soft Computing, 23 (2019), 11671-11698. 
    [24] S. Khalilpourazari and H. R. Pasandideh, Sinecosine crow search algorithm: theory and applications, Neural Comput. Appl., 1 (2019).
    [25] S. KhalilpourazariA. MirzazadehG. W. Weber and H. R. Pasandideh, A robust fuzzy approach for constrained multi-product economic production quantity with imperfect items and rework process, Optimization, 69 (2020), 63-90.  doi: 10.1080/02331934.2019.1630625.
    [26] S. N. Madhekar and R. S. Jangid, Seismic performance of benchmark highway bridge installed with piezoelectric friction dampers, IES J. Part A Civ. Struct. Eng., 4 (2011), 191-212. 
    [27] M. J. MahmoodabadiF. Farhadi and S. Sampour, Firefly algorithm based optimum design of vehicle suspension systems, Int. J. Dyn. Control., 7 (2019), 134-146. 
    [28] G. P. MavroeidisG. Dong and A. S. Papageorgiou, Near-fault ground motions, and the response of elastic and inelastic single-degree-of-freedom(SDOF) systems, Earthq. Eng. Struct. Dyn., 33 (2004), 1023-1049. 
    [29] S. Narasimhan, S. Nagarajaiah, H. Gavin and E. J. Johnson, Smart base-isolated benchmark building. Part Ⅰ: Problem definition, Struct. Control Heal. Monit., 13 (2006), 573-588.
    [30] S. NarasimhanS. Nagarajaiah and E. A.Johnson, Smart base-isolated benchmark building part Ⅳ: Phase Ⅱ sample controllers for nonlinear isolation systems, Struct. Control Heal. Monit., 15 (2008), 657-672. 
    [31] S. Narasimhan, Robust direct adaptive controller for the nonlinear highway bridge benchmark, Struct. Control Heal. Monit., 16 (2009), 599-612. 
    [32] S. NagarajaiahS. NarasimhanP. Tan and A. K. Agrawal, Benchmark structural control problem for a seismically excited highway bridge-Part Ⅲ: Phase Ⅱ Sample controller for the fully base-isolated case, Struct. Control Heal. Monit., 16 (2009), 549-563. 
    [33] X. L. NingP. TanD. Y. Huang and F. L. Zhou, Application of adaptive fuzzy sliding mode control to a seismically excited highway bridge, Struct. Control Heal. Monit., 16 (2009), 207-216. 
    [34] Y. OhtoriR. E. ChristensonB. F. Spencer and S. J. Dyke, Benchmark control problems for seismically excited nonlinear buildings, J. Eng. Mech., 130 (2004), 366-385. 
    [35] A. PreumontM. VoltanA. SangiovanniB. Mokrani and D. Alaluf, Active tendon control of suspension bridges, Smart Struct. Syst., 18 (2016), 31-52. 
    [36] A. SadollahH. EskandarA. Bahreininejad and J. H. Kim, Water cycle, mine blast and improved mine blast algorithms for discrete sizing optimization of truss structures, Comput. Struct., 149 (2015), 1-16. 
    [37] A. SahaP. Saha and P. S. Kumar, Polynomial friction pendulum isolators (PFPIs) for seismic performance control of benchmark highway bridge, Earthq. Eng. Eng. Vib., 16 (2017), 827-840. 
    [38] B. F. SpencerS. J. Dyke and H. S. Deoskar, Benchmark problems in structural control: Part Ⅰ Active Mass Driver system, Earthq. Eng. Struct. Dyn., 27 (1998), 1127-1139. 
    [39] P. Tan and A. K. Agrawal, Benchmark structural control problem for a seismically excited highway bridge, Part Ⅱ : Phase Ⅰ Sample control designs, Struct. Control Heal. Monit., 129 (2009), 857-872. 
    [40] J. N. YangA. K. AgrawalB. Samali and J. C. Wu, Benchmark control problems for seismically excited nonlinear buildings, J. Eng. Mech., 130 (2004), 437-446. 
  • 加载中

Figures(14)

Tables(5)

SHARE

Article Metrics

HTML views(2549) PDF downloads(453) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return