Advanced Search
Article Contents
Article Contents

Optimal control of viral infection model with saturated infection rate

Abstract / Introduction Full Text(HTML) Figure(5) Related Papers Cited by
  • This paper deals with an optimal control problem for a viral infection model with cytotoxic T-lymphocytes (CTL) immune response. The model under consideration describes the interaction between the uninfected cells, the infected cells, the free viruses and the CTL cells. The two treatments represent the efficiency of drug treatment in inhibiting viral production and preventing new infections. Existence of the optimal control pair is established and the Pontryagin's maximum principle is used to characterize these two optimal controls. The optimality system is derived and solved numerically using the forward and backward difference approximation. Finally, numerical simulations are performed in order to show the role of optimal therapy in controlling the infection severity.

    Mathematics Subject Classification: 92B05, 93C95, 34H05, 65L03.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The uninfected cells as function of time

    Figure 2.  The infected cells as function of time

    Figure 3.  The viral load as function of time

    Figure 4.  The CTL cells as function of time

    Figure 5.  The optimal control $ u_1 $ (left) and the optimal control $ u_2 $ (right) versus time

  • [1] B. M. AdamsH. T. BanksH. D. Kwon and H. T. Tran, Dynamic multidrug therapies for HIV: optimal and STI control approaches, Math. Biosci. Eng., 1 (2004), 223-241.  doi: 10.3934/mbe.2004.1.223.
    [2] K. Allali, J. Danane and Y. Kuang, Global analysis for an HIV infection model with CTL immune response and infected cells in eclipse phase, Applied Sciences (2076-3417), 7 (2017).
    [3] K. AllaliS. Harroudi and D. F. Torres, Analysis and optimal control of an intracellular delayed HIV model with CTL immune response, Mathematics in Computer Science, 12 (2018), 111-127.  doi: 10.1007/s11786-018-0333-9.
    [4] R. CulshawS. Ruan and R. J. Spiteri, Optimal HIV treatment by maximising immune response, J. Math. Biol., 48 (2004), 545-562.  doi: 10.1007/s00285-003-0245-3.
    [5] E. S. DaarT. MoudgilR. D. Meyer and D. D. Ho, Transient highlevels of viremia in patients with primary human immunodeficiency virus type 1, New Engl. J. Med., 324 (1991), 961-964. 
    [6] J. DananeA. Meskaf and K. Allali, Optimal control of a delayed hepatitis B viral infection model with HBV DNA containing capsids and CTL immune response, Optimal Control Applications and Methods, 39 (2018), 1262-1272.  doi: 10.1002/oca.2407.
    [7] J. Danane and K. Allali, Mathematical analysis and treatment for a delayed hepatitis B viral infection model with the adaptive immune response and DNA-containing capsids, High-throughput, 7 (2018), 35.
    [8] J. Danane and K. Allali, Optimal control of an HIV model with CTL cells and latently infected cells, Numerical Algebra, Control and Optimization, 10 (2020), 207-225.  doi: 10.3934/naco.2019048.
    [9] R. J. De Boer and A. S. Perelson, Target cell limited and immune control models of HIV infection: a comparison, J. Theor. Biol., 190 (1998), 201-214. 
    [10] K. R. FisterS. Lenhart and J. S. McNally, Optimizing chemotherapy in an HIV model, Electron J. Differ. Equ., 32 (1998), 1-12. 
    [11] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, Berlin, 1975.
    [12] T. J. Liang, Hepatitis B: the virus and disease, Hepatology, 49 (2009), S13–S21.
    [13] C. LiuR. Loxton and K. L. Teo, A computational method for solving time-delay optimal control problems with free terminal time, Systems and Control Letters, 72 (2014), 53-60.  doi: 10.1016/j.sysconle.2014.07.001.
    [14] C. LiuZ. GongH. W. J. Lee and K. L. Teo, Robust bi-objective optimal control of 1, 3-propanediol microbial batch production process, Journal of Process Control, 78 (2019), 170-182.  doi: 10.1016/j.jprocont.2018.10.001.
    [15] A. MeskafY. Tabit and K. Allali, Global analysis of a HCV model with CTL, antibody responses and therapy, Applied Mathematical Sciences, 9 (2015), 3997-4008. 
    [16] A. MeskafK. Allali and Y. Tabit, Optimal control of a delayed hepatitis B viral infection model with cytotoxic T-lymphocyte and antibody responses, International Journal of Dynamics and Control, 5 (2017), 893-902.  doi: 10.1007/s40435-016-0231-4.
    [17] M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79. 
    [18] G. Pachpute and S. P. Chakrabarty, Dynamics of hepatitis C under optimal therapy and sampling based analysis, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2202-2212.  doi: 10.1016/j.cnsns.2012.12.032.
    [19] L. Pontryagin and V. Boltyanskii, et al., The Mathematical Theory of Optimal Processes, Wiley, New York, 1962.
    [20] D. RochaC. J. Silva and D. F. M. Torres, Stability and optimal control of a delayed HIV model, Math. Methods Appl. Sci., 41 (2018), 2251-2260.  doi: 10.1002/mma.4207.
    [21] L. B. Seeff, Natural history of chronic hepatitis C, Hepatology, 36 (2002), S35–S46. doi: 10.1002/hep.1840360706.
    [22] M. A. StaffordL. CoreyY. CaoE. S. DaarD. D. Ho and A. S. Perelson, Modeling plasma virus concentration during primary HIV infection, J. Theor. Biol., 203 (2000), 285-301. 
    [23] Q. SunL. Min and Y. Kuang, Global stability of infection-free state and endemic infection state of a modified human immunodeficiency virus infection model, IET Systems Biology, 9 (2015), 95-103. 
    [24] Q. Sun and L. Min, Dynamics analysis and simulation of a modified hiv infection model with a saturated infection rate, Computational and Mathematical Methods in Medicine, (2014), Article ID 145162, 14 pages. doi: 10.1155/2014/145162.
    [25] G. W. Swan, Role of optimal control theory in cancer chemotherapy, Math. Biosci., 101 (1990), 237-284. 
    [26] K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, 1991.
    [27] World Health Organization HIV/AIDS Key facts, November 2017, http://www.who.int/mediacentre/factsheets/fs360/en/index.html.,
    [28] H. ZhuY. Luo and M. Chen, Stability and Hopfbifurcation of a HIV infection model with CTL-response delay, Computers and Mathematics with Applications, 62 (2011), 3091-3102.  doi: 10.1016/j.camwa.2011.08.022.
  • 加载中



Article Metrics

HTML views(2296) PDF downloads(441) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint