
-
Previous Article
Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey
- NACO Home
- This Issue
-
Next Article
Optimal control of viral infection model with saturated infection rate
Behavior of the combination of PRP and HZ methods for unconstrained optimization
Laboratory Informatics and Mathematics (LiM), Mohamed Cherif Messaadia University, Souk Ahras, 41000, Algeria |
To achieve a conjugate gradient method which is strong in theory and efficient in practice for solving unconstrained optimization problem, we propose a hybridization of the Hager and Zhang (HZ) and Polak-Ribière and Polyak (PRP) conjugate gradient methods which possesses an important property of the well known PRP method: the tendency to turn towards the steepest descent direction if a small step is generated away from the solution, averting a sequence of tiny steps from happening, the new scalar $ \beta_k $ is obtained by convex combination of PRP and HZ under the wolfe line search we prove the sufficient descent and the global convergence. Numerical results are reported to show the effectiveness of our procedure.
References:
[1] |
M. Al-Baali,
Descent property and global convergence of the Fletcher–Reeves method with inexact line search, IMA Journal of Numerical Analysis, 5 (1985), 121-124.
doi: 10.1093/imanum/5.1.121. |
[2] |
N. Andrei,
Another hybrid conjugate gradient algorithm for unconstrained optimization, Numerical Algorithms, 47 (2008), 143-156.
doi: 10.1007/s11075-007-9152-9. |
[3] |
N. Andrei, New hybrid conjugate gradient algorithms for unconstrained optimization, in Encyclopedia of Optimization(eds. A. F. Christodoulos and M. P. Panos), 2009.
doi: 10.1007/978-0-387-74759-0_441. |
[4] |
B. Balaram, M. Narayanan and P. Rajendrakumar,
Optimal design of multi-parametric nonlinear systems using a parametric continuation based genetic algorithm approach, Nonlinear Dynamics, 67 (2012), 2759-2777.
doi: 10.1007/s11071-011-0187-z. |
[5] |
I. Bongartz, A. R. Conn, N. Gould and P. L. Toint, CUTE: constrained and unconstrained testing environments, ACM Transactions on Mathematical Software (TOMS), 21 (1995), 123-160. Google Scholar |
[6] |
N. Chenna, Comments on "New Hybrid Conjugate Gradient Method as a Convex Combination of FR and PRP Methods", FILOMAT, 33 (2019), 3083-3100. Google Scholar |
[7] |
Y.-H. Dai and Y. Yuan,
A nonlinear conjugate gradient method with a strong global convergence property, SIAM Journal on Optimization, 10 (1999), 177-182.
doi: 10.1137/S1052623497318992. |
[8] |
S. S. Djordjević,
New hybrid conjugate gradient method as a convex combination of FR and PRP methods, Filomat, 30 (2016), 3083-3100.
doi: 10.2298/FIL1611083D. |
[9] |
E. D. Dolan and J. J. Moré,
Benchmarking optimization software with performance profiles, Mathematical Programming, 91 (2002), 201-213.
doi: 10.1007/s101070100263. |
[10] |
W. W. Hager and H. Zhang,
A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM Journal on Optimization, 16 (2005), 170-192.
doi: 10.1137/030601880. |
[11] |
X. Z. Jiang, G.-D. Ma and J.-B. Jian,
A new global convergent conjugate gradient method with Wolfe line search, Chinese Journal of Engineering Mathematics, 28 (2011), 779-786.
|
[12] |
J. Liu and S. Li,
New hybrid conjugate gradient method for unconstrained optimization, Applied Mathematics and Computation, 245 (2014), 36-43.
doi: 10.1016/j.amc.2014.07.096. |
[13] |
E. Polak and G. Ribière, Note sur la convergence de méthodes de directions conjuguées, Revue Française D'informatique et De Recherche Opérationnelle, Série Rouge, 3 (1969), 35–43. |
[14] |
B. T. Polyak, The conjugate gradient method in extremal problems, USSR Computational Mathematics and Mathematical Physics, 9 (1969), 94-112. Google Scholar |
[15] |
M. Powell, Nonconvex minimization calculations and the conjugate gradient method, Numerical Analysis(ed. D. F.Griffiths), Volume 1066 of Lecture Notes in Math., Dundee, (1984), 122–141.
doi: 10.1007/BFb0099521. |
[16] |
Z. Wei, G. Li and L. Qi,
New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems, Applied Mathematics and Computation, 179 (2006), 407-430.
doi: 10.1016/j.amc.2005.11.150. |
[17] |
G. Yuan, Z. Wei and Q. Zhao,
A modified Polak–Ribière–Polyak conjugate gradient algorithm for large-scale optimization problems, IIE Transactions, 46 (2014), 397-413.
doi: 10.1080/01630563.2013.777350. |
[18] |
G. Zoutendijk, Nonlinear programming, computational methods, Integer and Nonlinear Programming, (1970), 37–86. |
show all references
References:
[1] |
M. Al-Baali,
Descent property and global convergence of the Fletcher–Reeves method with inexact line search, IMA Journal of Numerical Analysis, 5 (1985), 121-124.
doi: 10.1093/imanum/5.1.121. |
[2] |
N. Andrei,
Another hybrid conjugate gradient algorithm for unconstrained optimization, Numerical Algorithms, 47 (2008), 143-156.
doi: 10.1007/s11075-007-9152-9. |
[3] |
N. Andrei, New hybrid conjugate gradient algorithms for unconstrained optimization, in Encyclopedia of Optimization(eds. A. F. Christodoulos and M. P. Panos), 2009.
doi: 10.1007/978-0-387-74759-0_441. |
[4] |
B. Balaram, M. Narayanan and P. Rajendrakumar,
Optimal design of multi-parametric nonlinear systems using a parametric continuation based genetic algorithm approach, Nonlinear Dynamics, 67 (2012), 2759-2777.
doi: 10.1007/s11071-011-0187-z. |
[5] |
I. Bongartz, A. R. Conn, N. Gould and P. L. Toint, CUTE: constrained and unconstrained testing environments, ACM Transactions on Mathematical Software (TOMS), 21 (1995), 123-160. Google Scholar |
[6] |
N. Chenna, Comments on "New Hybrid Conjugate Gradient Method as a Convex Combination of FR and PRP Methods", FILOMAT, 33 (2019), 3083-3100. Google Scholar |
[7] |
Y.-H. Dai and Y. Yuan,
A nonlinear conjugate gradient method with a strong global convergence property, SIAM Journal on Optimization, 10 (1999), 177-182.
doi: 10.1137/S1052623497318992. |
[8] |
S. S. Djordjević,
New hybrid conjugate gradient method as a convex combination of FR and PRP methods, Filomat, 30 (2016), 3083-3100.
doi: 10.2298/FIL1611083D. |
[9] |
E. D. Dolan and J. J. Moré,
Benchmarking optimization software with performance profiles, Mathematical Programming, 91 (2002), 201-213.
doi: 10.1007/s101070100263. |
[10] |
W. W. Hager and H. Zhang,
A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM Journal on Optimization, 16 (2005), 170-192.
doi: 10.1137/030601880. |
[11] |
X. Z. Jiang, G.-D. Ma and J.-B. Jian,
A new global convergent conjugate gradient method with Wolfe line search, Chinese Journal of Engineering Mathematics, 28 (2011), 779-786.
|
[12] |
J. Liu and S. Li,
New hybrid conjugate gradient method for unconstrained optimization, Applied Mathematics and Computation, 245 (2014), 36-43.
doi: 10.1016/j.amc.2014.07.096. |
[13] |
E. Polak and G. Ribière, Note sur la convergence de méthodes de directions conjuguées, Revue Française D'informatique et De Recherche Opérationnelle, Série Rouge, 3 (1969), 35–43. |
[14] |
B. T. Polyak, The conjugate gradient method in extremal problems, USSR Computational Mathematics and Mathematical Physics, 9 (1969), 94-112. Google Scholar |
[15] |
M. Powell, Nonconvex minimization calculations and the conjugate gradient method, Numerical Analysis(ed. D. F.Griffiths), Volume 1066 of Lecture Notes in Math., Dundee, (1984), 122–141.
doi: 10.1007/BFb0099521. |
[16] |
Z. Wei, G. Li and L. Qi,
New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems, Applied Mathematics and Computation, 179 (2006), 407-430.
doi: 10.1016/j.amc.2005.11.150. |
[17] |
G. Yuan, Z. Wei and Q. Zhao,
A modified Polak–Ribière–Polyak conjugate gradient algorithm for large-scale optimization problems, IIE Transactions, 46 (2014), 397-413.
doi: 10.1080/01630563.2013.777350. |
[18] |
G. Zoutendijk, Nonlinear programming, computational methods, Integer and Nonlinear Programming, (1970), 37–86. |
Problems | n | hPRPHZ | PRP | HZ | |||
time | iter | time | iter | time | iter | ||
FLETCHCR | 5000 | 95.6800 | 34677 | 123.9500 | 456454 | 84.2000 | 40000 |
CURLY30 | 1000 | 8.8600 | 15122 | 8.8700 | 15401 | NaN | NaN |
CURLY20 | 1000 | 10.9100 | 15084 | 6.9600 | 15797 | NaN | NaN |
DIXMAANI | 6000 | 9.4300 | 2661 | 9.0600 | 2261 | 13.9800 | 4720 |
EIGENBLS | 420 | 3.5500 | 4978 | 10.1100 | 5440 | 14.9300 | 9714 |
TRIDIA | 10 000 | 7.3200 | 1116 | 3.1900 | 1116 | 3.8900 | 2231 |
NONDQUAR | 5000 | 4.2400 | 5099 | 7.5000 | 5058 | 9.4700 | 10058 |
CURLY10 | 1000 | 4.2700 | 14406 | 4.0600 | 13659 | NaN | NaN |
EIGENCLS | 462 | 4.2500 | 1802 | 4.1000 | 1883 | 5.9900 | 3312 |
SPARSINE | 1000 | 2.5700 | 4516 | 4.3200 | 4483 | 6.5900 | 8793 |
EIGENALS | 420 | 3.9700 | 1344 | 2.4900 | 1306 | 4.7400 | 2998 |
FLETCHCR | 1000 | 6.0300 | 7479 | 4.9300 | 9139 | 3.5700 | 8986 |
GENHUMPS | 1000 | 2.2400 | 3555 | 5.8400 | 3435 | 7.5500 | 5807 |
FMINSURF | 5625 | 1.0000 | 492 | 3.4700 | 669 | 3.3900 | 949 |
TRIDIA | 5000 | 1.0900 | 783 | 1.0700 | 783 | 1.3100 | 1565 |
DIXMAANE | 6000 | 1.2200 | 303 | 1.2600 | 306 | 2.1300 | 620 |
DIXMAANJ | 6000 | 23.8000 | 296 | 1.1800 | 275 | 2.1700 | 557 |
BDQRTIC | 5000 | 1.3500 | 8726 | 7.6400 | 2428 | NaN | NaN |
DIXMAANK | 6000 | 1.8100 | 264 | 1.1100 | 248 | 1.8000 | 587 |
NONCVXU2 | 1000 | 1.5600 | 2055 | 1.9200 | 2015 | 3.6400 | 3919 |
DIXMAANL | 6000 | 0.9700 | 245 | 1.3200 | 215 | 3.0100 | 702 |
SENSORS | 100 | 1.0700 | 44 | 0.9700 | 45 | 1.3600 | 66 |
DIXMAANF | 6000 | 1.0400 | 230 | 1.1200 | 230 | 1.6200 | 437 |
DIXMAANG | 6000 | 1.3400 | 227 | 1.0800 | 227 | 1.4500 | 420 |
DIXMAANH | 6000 | 0.9900 | 224 | 1.1600 | 224 | 2.6400 | 825 |
FLETCBV2 | 1000 | 1.4000 | 1055 | 1.0000 | 1044 | 1.2900 | 1886 |
SCHMVETT | 10 000 | 2.3800 | 60 | 1.5000 | 64 | 2.5900 | 105 |
GENHUMPS | 500 | 1.0100 | 2258 | 2.1500 | 2531 | 2.7000 | 4147 |
CRAGGLVY | 5000 | 0.7400 | 143 | 0.9900 | 138 | NaN | NaN |
MOREBV | 10 000 | 1.1900 | 97 | 0.8900 | 97 | 1.2800 | 201 |
WOODS | 10 000 | 0.8400 | 257 | 1.1700 | 230 | 2.1400 | 487 |
NONDQUAR | 1000 | 0.3800 | 3147 | 1.4500 | 4900 | 1.6300 | 8128 |
SPARSQUR | 10 000 | 0.3500 | 23 | 0.3800 | 23 | 1.1300 | 131 |
POWER | 5000 | 0.6500 | 259 | 0.6100 | 408 | 0.4000 | 514 |
MANCINO | 100 | 0.3500 | 12 | 0.6000 | 11 | 1.1500 | 27 |
CRAGGLVY | 2000 | 0.3300 | 132 | 0.3700 | 142 | NaN | NaN |
CURLY30 | 200 | 0.4800 | 2819 | 0.3600 | 3066 | NaN | NaN |
LIARWHD | 10 000 | 0.5700 | 41 | 0.4600 | 39 | 0.4800 | 46 |
BDQRTIC | 1000 | 0.4600 | 1025 | 0.4900 | 798 | NaN | NaN |
GENROSE | 500 | 0.2900 | 1309 | 0.4900 | 1624 | 0.4600 | 2278 |
VARDIM | 10 000 | 0.2700 | 62 | 0.2900 | 57 | NaN | NaN |
CURLY20 | 200 | 0.7100 | 2951 | 0.3000 | 2835 | NaN | NaN |
FREUROTH | 5000 | 0.4000 | 96 | 0.5900 | 76 | NaN | NaN |
ENGVAL1 | 10 000 | 0.2800 | 35 | 0.4100 | 34 | NaN | NaN |
POWELLSG | 10 000 | 0.2500 | 77 | 0.2300 | 49 | 0.7200 | 362 |
DIXON3DQ | 1000 | 0.3100 | 1002 | 0.2700 | 1002 | 0.3300 | 2005 |
BRYBND | 5000 | 0.4500 | 39 | 0.3200 | 40 | 0.3800 | 66 |
HILBERTA | 200 | 0.7100 | 50 | 0.3700 | 25 | 0.3800 | 38 |
TQUARTIC | 10 000 | 0.1900 | 61 | 0.6500 | 52 | 0.5800 | 38 |
CURLY10 | 200 | 0.2100 | 3100 | 0.2000 | 3182 | NaN | NaN |
FLETCBV2 | 500 | 0.2600 | 480 | 0.2200 | 482 | 0.3600 | 962 |
FMINSURF | 1024 | 0.1200 | 238 | 0.2400 | 300 | 0.2800 | 455 |
VARDIM | 5000 | 0.2000 | 44 | 0.1300 | 47 | NaN | NaN |
FMINSRF2 | 1024 | 0.1400 | 282 | 0.2600 | 355 | 0.2900 | 517 |
SPMSRTLS | 1000 | 0.2400 | 151 | 0.1500 | 151 | 0.2000 | 281 |
LIARWHD | 5000 | 0.2600 | 32 | 0.3000 | 48 | 0.2500 | 46 |
NONDIA | 10 000 | 0.2600 | 16 | 0.2300 | 10 | 0.3100 | 26 |
POWELLSG | 5000 | 0.5500 | 187 | 0.1100 | 53 | 0.3200 | 346 |
ARWHEAD | 10 000 | 0.1600 | 15 | 0.5300 | 12 | NaN | NaN |
SROSENBR | 10 000 | 0.1900 | 17 | 0.1700 | 19 | 0.1700 | 26 |
TQUARTIC | 5000 | 0.1700 | 38 | 0.2100 | 54 | 0.1700 | 32 |
PENALTY1 | 5000 | 0.2500 | 62 | 0.2200 | 80 | 0.3400 | 152 |
DQDRTIC | 10 000 | 0.1300 | 8 | 0.2600 | 8 | 0.2700 | 15 |
NONDIA | 5000 | 0.2200 | 22 | 0.1400 | 26 | 0.1300 | 26 |
ARGLINB | 300 | 0.1300 | 23 | 0.2000 | 17 | NaN | NaN |
DIXMAAND | 6000 | 0.2500 | 13 | 0.1300 | 12 | 0.1600 | 25 |
ARGLINC | 300 | 0.0800 | 19 | 0.2700 | 25 | NaN | NaN |
DQRTIC | 5000 | 0.0900 | 34 | 0.1000 | 34 | 0.1000 | 66 |
QUARTC | 5000 | 0.0900 | 34 | 0.0900 | 34 | 0.1000 | 66 |
EIGENALS | 110 | 0.0400 | 389 | 0.0800 | 359 | 0.1600 | 806 |
SINQUAD | 500 | 0.0800 | 111 | 0.0400 | 93 | NaN | NaN |
SPARSINE | 200 | 0.0600 | 445 | 0.0800 | 445 | 0.1300 | 917 |
DIXON3DQ | 500 | 0.2400 | 500 | 0.0600 | 500 | 0.0800 | 1003 |
DIXMAANC | 6000 | 0.2200 | 11 | 0.2400 | 11 | 0.2600 | 23 |
HILBERTB | 200 | 0.2100 | 6 | 0.2200 | 6 | 0.2500 | 13 |
BROWNAL | 400 | 0.0700 | 13 | 0.2000 | 7 | 0.2700 | 37 |
EIGENCLS | 90 | 0.2500 | 360 | 0.0700 | 350 | 0.1100 | 743 |
ARGLINA | 300 | 0.2300 | 2 | 0.2500 | 2 | 0.2600 | 5 |
EXTROSNB | 50 | 0.1300 | 5819 | 0.1900 | 5294 | 0.2400 | 7808 |
PENALTY2 | 200 | 0.1800 | 365 | 0.1400 | 417 | NaN | NaN |
FREUROTH | 1000 | 0.0700 | 187 | 0.1600 | 137 | NaN | NaN |
BRYBND | 1000 | 0.0600 | 52 | 0.0600 | 35 | 0.0800 | 73 |
DIXMAANB | 3000 | 0.0400 | 10 | 0.0600 | 10 | 0.0700 | 23 |
NONCVXU2 | 100 | 0.0600 | 396 | 0.0300 | 414 | 0.0500 | 801 |
DIXMAANA | 3000 | 0.2100 | 10 | 0.0500 | 9 | 0.0700 | 20 |
TOINTGSS | 10 000 | 0.0300 | 5 | 0.2100 | 5 | 0.3800 | 20 |
POWER | 1000 | 0.0600 | 117 | 0.0600 | 222 | 0.0400 | 236 |
DECONVU | 61 | 0.0200 | 462 | 0.0600 | 460 | 0.0700 | 581 |
GENROSE | 100 | 0.0200 | 347 | 0.0200 | 392 | 0.0300 | 626 |
COSINE | 1000 | 0.0300 | 24 | 0.0200 | 24 | 0.0300 | 29 |
DIXMAANB | 1500 | 0.0100 | 10 | 0.0300 | 10 | 0.0400 | 24 |
CHNROSNB | 50 | 0.0300 | 273 | 0.0200 | 285 | 0.0100 | 500 |
DIXMAANA | 1500 | 0.0100 | 10 | 0.0300 | 9 | 0.0300 | 22 |
FMINSRF2 | 121 | 0.0300 | 115 | 0.0100 | 124 | 0.0100 | 250 |
ARWHEAD | 1000 | 0.0100 | 16 | 0.0300 | 19 | NaN | NaN |
COSINE | 500 | 0.0200 | 23 | 0 | 22 | 0.0100 | 26 |
DQDRTIC | 1000 | 0.0600 | 8 | 0.0200 | 8 | 0.0300 | 15 |
ERRINROS | 50 | 0.0200 | 1444 | 0.0900 | 2416 | NaN | NaN |
EG2 | 1000 | 0.0100 | 6 | 0.0100 | 6 | NaN | NaN |
TESTQUAD | 100 | 0.0100 | 321 | 0.0100 | 303 | 0.0100 | 925 |
TOINTGOR | 50 | 0.8800 | 151 | 0.0100 | 155 | 0.0100 | 250 |
SPARSINE | 5000 | 0.1300 | 370 | 1.5700 | 544 | 1.1200 | 719 |
FMINSRF2 | 10 000 | 0.2800 | 26 | 0.1200 | 23 | 0.1300 | 27 |
FMINSRF2 | 15 625 | 1.1300 | 28 | 0.2600 | 23 | 0.2800 | 28 |
FMINSRF2 | 5625 | 3.0500 | 227 | 1.3100 | 214 | 1.8900 | 430 |
NONDQUAR | 10 000 | 1.3200 | 234 | 2.4200 | 225 | 3.5200 | 440 |
POWER | 10 000 | 43.7500 | 142 | 0.7100 | 62 | NaN | NaN |
ARWHEAD | 5000 | 0.2100 | 7298 | 36.8400 | 6398 | NaN | NaN |
COSINE | 5000 | 59.1900 | 37 | 0.2000 | 35 | NaN | NaN |
COSINE | 10 000 | 3.6600 | 8476 | 31.5200 | 4721 | 53.2500 | 8965 |
FMINSURF | 10 000 | 0.6400 | 8771 | 2.1400 | 5022 | 2.4100 | 6779 |
FMINSURF | 15 625 | 0.3600 | 108 | 0.4700 | 62 | NaN | NaN |
BROYDN7D | 1000 | 5.3900 | 498 | 0.2700 | 371 | NaN | NaN |
SPMSRTLS | 4999 | 0.0010 | 2232 | 5.4700 | 2183 | 6.4500 | 4093 |
SPMSRTLS | 10 000 | 0.0010 | NaN | NaN | NaN | 0.2800 | NaN |
FREUROTH | 10 000 | 0.0010 | NaN | NaN | NaN | 1.8900 | NaN |
FLETCBV2 | 500 | 0.0010 | NaN | NaN | NaN | 3.5200 | NaN |
BDQRTIC | 10 000 | 0.0010 | 1 | NaN | NaN | 0.2800 | NaN |
VAREIGVL | 10 000 | 0.0010 | 1 | NaN | NaN | 1.8900 | NaN |
ENGVAL1 | 5000 | NaN | 1 | NaN | NaN | 3.5200 | NaN |
BRYBND | 10 000 | 0.1000 | 34677 | 0.5000 | 456454 | 0.9000 | 40000 |
EIGENBLS | 930 | 0.1000 | 15122 | 0.0500 | 15401 | 0.9000 | NaN |
NONCVXUN | 500 | 0.1000 | 15084 | 0.0500 | 15797 | 0.9000 | NaN |
GENROSE | 1000 | 0.1000 | 2661 | 0.5000 | 2261 | 0.9000 | 4720 |
GENROSE | 5000 | 0.1000 | 4978 | 0.0500 | 5440 | 0.9000 | 9714 |
EIGENALS | 930 | 0.1000 | 1116 | 0.0500 | 1116 | 0.9000 | 2231 |
SINQUAD | 5000 | 0.1000 | 5099 | 0.5000 | 5058 | 0.9000 | 10058 |
SINQUAD | 10 000 | 0.1000 | 14406 | 0.0500 | 13659 | 0.9000 | NaN |
GENHUMPS | 5000 | 0.1000 | 1802 | 0.0500 | 1883 | 0.9000 | 3312 |
CHAINWOO | 1000 | 0.1000 | 4516 | 0.5000 | 4483 | 0.9000 | 8793 |
TESTQUAD | 1000 | 0.1000 | 1344 | 0.0500 | 1306 | 0.9000 | 2998 |
TESTQUAD | 10 000 | 0.1000 | 7479 | 0.0500 | 9139 | 0.9000 | 8986 |
TESTQUAD | 5000 | 0.1000 | 3555 | 0.5000 | 3435 | 0.9000 | 5807 |
FLETCHCR | 5000 | 0.1000 | 492 | 0.0500 | 669 | 0.9000 | 949 |
CURLY30 | 1000 | 0.1000 | 783 | 0.0500 | 783 | 0.9000 | 1565 |
CURLY20 | 1000 | 0.1000 | 303 | NaN | 306 | 0.9000 | 620 |
DIXMAANI | 6000 | 0.1000 | 296 | NaN | 275 | 0.9000 | 557 |
EIGENBLS | 420 | 0.1000 | 8726 | NaN | 2428 | 0.9000 | NaN |
Problems | n | hPRPHZ | PRP | HZ | |||
time | iter | time | iter | time | iter | ||
FLETCHCR | 5000 | 95.6800 | 34677 | 123.9500 | 456454 | 84.2000 | 40000 |
CURLY30 | 1000 | 8.8600 | 15122 | 8.8700 | 15401 | NaN | NaN |
CURLY20 | 1000 | 10.9100 | 15084 | 6.9600 | 15797 | NaN | NaN |
DIXMAANI | 6000 | 9.4300 | 2661 | 9.0600 | 2261 | 13.9800 | 4720 |
EIGENBLS | 420 | 3.5500 | 4978 | 10.1100 | 5440 | 14.9300 | 9714 |
TRIDIA | 10 000 | 7.3200 | 1116 | 3.1900 | 1116 | 3.8900 | 2231 |
NONDQUAR | 5000 | 4.2400 | 5099 | 7.5000 | 5058 | 9.4700 | 10058 |
CURLY10 | 1000 | 4.2700 | 14406 | 4.0600 | 13659 | NaN | NaN |
EIGENCLS | 462 | 4.2500 | 1802 | 4.1000 | 1883 | 5.9900 | 3312 |
SPARSINE | 1000 | 2.5700 | 4516 | 4.3200 | 4483 | 6.5900 | 8793 |
EIGENALS | 420 | 3.9700 | 1344 | 2.4900 | 1306 | 4.7400 | 2998 |
FLETCHCR | 1000 | 6.0300 | 7479 | 4.9300 | 9139 | 3.5700 | 8986 |
GENHUMPS | 1000 | 2.2400 | 3555 | 5.8400 | 3435 | 7.5500 | 5807 |
FMINSURF | 5625 | 1.0000 | 492 | 3.4700 | 669 | 3.3900 | 949 |
TRIDIA | 5000 | 1.0900 | 783 | 1.0700 | 783 | 1.3100 | 1565 |
DIXMAANE | 6000 | 1.2200 | 303 | 1.2600 | 306 | 2.1300 | 620 |
DIXMAANJ | 6000 | 23.8000 | 296 | 1.1800 | 275 | 2.1700 | 557 |
BDQRTIC | 5000 | 1.3500 | 8726 | 7.6400 | 2428 | NaN | NaN |
DIXMAANK | 6000 | 1.8100 | 264 | 1.1100 | 248 | 1.8000 | 587 |
NONCVXU2 | 1000 | 1.5600 | 2055 | 1.9200 | 2015 | 3.6400 | 3919 |
DIXMAANL | 6000 | 0.9700 | 245 | 1.3200 | 215 | 3.0100 | 702 |
SENSORS | 100 | 1.0700 | 44 | 0.9700 | 45 | 1.3600 | 66 |
DIXMAANF | 6000 | 1.0400 | 230 | 1.1200 | 230 | 1.6200 | 437 |
DIXMAANG | 6000 | 1.3400 | 227 | 1.0800 | 227 | 1.4500 | 420 |
DIXMAANH | 6000 | 0.9900 | 224 | 1.1600 | 224 | 2.6400 | 825 |
FLETCBV2 | 1000 | 1.4000 | 1055 | 1.0000 | 1044 | 1.2900 | 1886 |
SCHMVETT | 10 000 | 2.3800 | 60 | 1.5000 | 64 | 2.5900 | 105 |
GENHUMPS | 500 | 1.0100 | 2258 | 2.1500 | 2531 | 2.7000 | 4147 |
CRAGGLVY | 5000 | 0.7400 | 143 | 0.9900 | 138 | NaN | NaN |
MOREBV | 10 000 | 1.1900 | 97 | 0.8900 | 97 | 1.2800 | 201 |
WOODS | 10 000 | 0.8400 | 257 | 1.1700 | 230 | 2.1400 | 487 |
NONDQUAR | 1000 | 0.3800 | 3147 | 1.4500 | 4900 | 1.6300 | 8128 |
SPARSQUR | 10 000 | 0.3500 | 23 | 0.3800 | 23 | 1.1300 | 131 |
POWER | 5000 | 0.6500 | 259 | 0.6100 | 408 | 0.4000 | 514 |
MANCINO | 100 | 0.3500 | 12 | 0.6000 | 11 | 1.1500 | 27 |
CRAGGLVY | 2000 | 0.3300 | 132 | 0.3700 | 142 | NaN | NaN |
CURLY30 | 200 | 0.4800 | 2819 | 0.3600 | 3066 | NaN | NaN |
LIARWHD | 10 000 | 0.5700 | 41 | 0.4600 | 39 | 0.4800 | 46 |
BDQRTIC | 1000 | 0.4600 | 1025 | 0.4900 | 798 | NaN | NaN |
GENROSE | 500 | 0.2900 | 1309 | 0.4900 | 1624 | 0.4600 | 2278 |
VARDIM | 10 000 | 0.2700 | 62 | 0.2900 | 57 | NaN | NaN |
CURLY20 | 200 | 0.7100 | 2951 | 0.3000 | 2835 | NaN | NaN |
FREUROTH | 5000 | 0.4000 | 96 | 0.5900 | 76 | NaN | NaN |
ENGVAL1 | 10 000 | 0.2800 | 35 | 0.4100 | 34 | NaN | NaN |
POWELLSG | 10 000 | 0.2500 | 77 | 0.2300 | 49 | 0.7200 | 362 |
DIXON3DQ | 1000 | 0.3100 | 1002 | 0.2700 | 1002 | 0.3300 | 2005 |
BRYBND | 5000 | 0.4500 | 39 | 0.3200 | 40 | 0.3800 | 66 |
HILBERTA | 200 | 0.7100 | 50 | 0.3700 | 25 | 0.3800 | 38 |
TQUARTIC | 10 000 | 0.1900 | 61 | 0.6500 | 52 | 0.5800 | 38 |
CURLY10 | 200 | 0.2100 | 3100 | 0.2000 | 3182 | NaN | NaN |
FLETCBV2 | 500 | 0.2600 | 480 | 0.2200 | 482 | 0.3600 | 962 |
FMINSURF | 1024 | 0.1200 | 238 | 0.2400 | 300 | 0.2800 | 455 |
VARDIM | 5000 | 0.2000 | 44 | 0.1300 | 47 | NaN | NaN |
FMINSRF2 | 1024 | 0.1400 | 282 | 0.2600 | 355 | 0.2900 | 517 |
SPMSRTLS | 1000 | 0.2400 | 151 | 0.1500 | 151 | 0.2000 | 281 |
LIARWHD | 5000 | 0.2600 | 32 | 0.3000 | 48 | 0.2500 | 46 |
NONDIA | 10 000 | 0.2600 | 16 | 0.2300 | 10 | 0.3100 | 26 |
POWELLSG | 5000 | 0.5500 | 187 | 0.1100 | 53 | 0.3200 | 346 |
ARWHEAD | 10 000 | 0.1600 | 15 | 0.5300 | 12 | NaN | NaN |
SROSENBR | 10 000 | 0.1900 | 17 | 0.1700 | 19 | 0.1700 | 26 |
TQUARTIC | 5000 | 0.1700 | 38 | 0.2100 | 54 | 0.1700 | 32 |
PENALTY1 | 5000 | 0.2500 | 62 | 0.2200 | 80 | 0.3400 | 152 |
DQDRTIC | 10 000 | 0.1300 | 8 | 0.2600 | 8 | 0.2700 | 15 |
NONDIA | 5000 | 0.2200 | 22 | 0.1400 | 26 | 0.1300 | 26 |
ARGLINB | 300 | 0.1300 | 23 | 0.2000 | 17 | NaN | NaN |
DIXMAAND | 6000 | 0.2500 | 13 | 0.1300 | 12 | 0.1600 | 25 |
ARGLINC | 300 | 0.0800 | 19 | 0.2700 | 25 | NaN | NaN |
DQRTIC | 5000 | 0.0900 | 34 | 0.1000 | 34 | 0.1000 | 66 |
QUARTC | 5000 | 0.0900 | 34 | 0.0900 | 34 | 0.1000 | 66 |
EIGENALS | 110 | 0.0400 | 389 | 0.0800 | 359 | 0.1600 | 806 |
SINQUAD | 500 | 0.0800 | 111 | 0.0400 | 93 | NaN | NaN |
SPARSINE | 200 | 0.0600 | 445 | 0.0800 | 445 | 0.1300 | 917 |
DIXON3DQ | 500 | 0.2400 | 500 | 0.0600 | 500 | 0.0800 | 1003 |
DIXMAANC | 6000 | 0.2200 | 11 | 0.2400 | 11 | 0.2600 | 23 |
HILBERTB | 200 | 0.2100 | 6 | 0.2200 | 6 | 0.2500 | 13 |
BROWNAL | 400 | 0.0700 | 13 | 0.2000 | 7 | 0.2700 | 37 |
EIGENCLS | 90 | 0.2500 | 360 | 0.0700 | 350 | 0.1100 | 743 |
ARGLINA | 300 | 0.2300 | 2 | 0.2500 | 2 | 0.2600 | 5 |
EXTROSNB | 50 | 0.1300 | 5819 | 0.1900 | 5294 | 0.2400 | 7808 |
PENALTY2 | 200 | 0.1800 | 365 | 0.1400 | 417 | NaN | NaN |
FREUROTH | 1000 | 0.0700 | 187 | 0.1600 | 137 | NaN | NaN |
BRYBND | 1000 | 0.0600 | 52 | 0.0600 | 35 | 0.0800 | 73 |
DIXMAANB | 3000 | 0.0400 | 10 | 0.0600 | 10 | 0.0700 | 23 |
NONCVXU2 | 100 | 0.0600 | 396 | 0.0300 | 414 | 0.0500 | 801 |
DIXMAANA | 3000 | 0.2100 | 10 | 0.0500 | 9 | 0.0700 | 20 |
TOINTGSS | 10 000 | 0.0300 | 5 | 0.2100 | 5 | 0.3800 | 20 |
POWER | 1000 | 0.0600 | 117 | 0.0600 | 222 | 0.0400 | 236 |
DECONVU | 61 | 0.0200 | 462 | 0.0600 | 460 | 0.0700 | 581 |
GENROSE | 100 | 0.0200 | 347 | 0.0200 | 392 | 0.0300 | 626 |
COSINE | 1000 | 0.0300 | 24 | 0.0200 | 24 | 0.0300 | 29 |
DIXMAANB | 1500 | 0.0100 | 10 | 0.0300 | 10 | 0.0400 | 24 |
CHNROSNB | 50 | 0.0300 | 273 | 0.0200 | 285 | 0.0100 | 500 |
DIXMAANA | 1500 | 0.0100 | 10 | 0.0300 | 9 | 0.0300 | 22 |
FMINSRF2 | 121 | 0.0300 | 115 | 0.0100 | 124 | 0.0100 | 250 |
ARWHEAD | 1000 | 0.0100 | 16 | 0.0300 | 19 | NaN | NaN |
COSINE | 500 | 0.0200 | 23 | 0 | 22 | 0.0100 | 26 |
DQDRTIC | 1000 | 0.0600 | 8 | 0.0200 | 8 | 0.0300 | 15 |
ERRINROS | 50 | 0.0200 | 1444 | 0.0900 | 2416 | NaN | NaN |
EG2 | 1000 | 0.0100 | 6 | 0.0100 | 6 | NaN | NaN |
TESTQUAD | 100 | 0.0100 | 321 | 0.0100 | 303 | 0.0100 | 925 |
TOINTGOR | 50 | 0.8800 | 151 | 0.0100 | 155 | 0.0100 | 250 |
SPARSINE | 5000 | 0.1300 | 370 | 1.5700 | 544 | 1.1200 | 719 |
FMINSRF2 | 10 000 | 0.2800 | 26 | 0.1200 | 23 | 0.1300 | 27 |
FMINSRF2 | 15 625 | 1.1300 | 28 | 0.2600 | 23 | 0.2800 | 28 |
FMINSRF2 | 5625 | 3.0500 | 227 | 1.3100 | 214 | 1.8900 | 430 |
NONDQUAR | 10 000 | 1.3200 | 234 | 2.4200 | 225 | 3.5200 | 440 |
POWER | 10 000 | 43.7500 | 142 | 0.7100 | 62 | NaN | NaN |
ARWHEAD | 5000 | 0.2100 | 7298 | 36.8400 | 6398 | NaN | NaN |
COSINE | 5000 | 59.1900 | 37 | 0.2000 | 35 | NaN | NaN |
COSINE | 10 000 | 3.6600 | 8476 | 31.5200 | 4721 | 53.2500 | 8965 |
FMINSURF | 10 000 | 0.6400 | 8771 | 2.1400 | 5022 | 2.4100 | 6779 |
FMINSURF | 15 625 | 0.3600 | 108 | 0.4700 | 62 | NaN | NaN |
BROYDN7D | 1000 | 5.3900 | 498 | 0.2700 | 371 | NaN | NaN |
SPMSRTLS | 4999 | 0.0010 | 2232 | 5.4700 | 2183 | 6.4500 | 4093 |
SPMSRTLS | 10 000 | 0.0010 | NaN | NaN | NaN | 0.2800 | NaN |
FREUROTH | 10 000 | 0.0010 | NaN | NaN | NaN | 1.8900 | NaN |
FLETCBV2 | 500 | 0.0010 | NaN | NaN | NaN | 3.5200 | NaN |
BDQRTIC | 10 000 | 0.0010 | 1 | NaN | NaN | 0.2800 | NaN |
VAREIGVL | 10 000 | 0.0010 | 1 | NaN | NaN | 1.8900 | NaN |
ENGVAL1 | 5000 | NaN | 1 | NaN | NaN | 3.5200 | NaN |
BRYBND | 10 000 | 0.1000 | 34677 | 0.5000 | 456454 | 0.9000 | 40000 |
EIGENBLS | 930 | 0.1000 | 15122 | 0.0500 | 15401 | 0.9000 | NaN |
NONCVXUN | 500 | 0.1000 | 15084 | 0.0500 | 15797 | 0.9000 | NaN |
GENROSE | 1000 | 0.1000 | 2661 | 0.5000 | 2261 | 0.9000 | 4720 |
GENROSE | 5000 | 0.1000 | 4978 | 0.0500 | 5440 | 0.9000 | 9714 |
EIGENALS | 930 | 0.1000 | 1116 | 0.0500 | 1116 | 0.9000 | 2231 |
SINQUAD | 5000 | 0.1000 | 5099 | 0.5000 | 5058 | 0.9000 | 10058 |
SINQUAD | 10 000 | 0.1000 | 14406 | 0.0500 | 13659 | 0.9000 | NaN |
GENHUMPS | 5000 | 0.1000 | 1802 | 0.0500 | 1883 | 0.9000 | 3312 |
CHAINWOO | 1000 | 0.1000 | 4516 | 0.5000 | 4483 | 0.9000 | 8793 |
TESTQUAD | 1000 | 0.1000 | 1344 | 0.0500 | 1306 | 0.9000 | 2998 |
TESTQUAD | 10 000 | 0.1000 | 7479 | 0.0500 | 9139 | 0.9000 | 8986 |
TESTQUAD | 5000 | 0.1000 | 3555 | 0.5000 | 3435 | 0.9000 | 5807 |
FLETCHCR | 5000 | 0.1000 | 492 | 0.0500 | 669 | 0.9000 | 949 |
CURLY30 | 1000 | 0.1000 | 783 | 0.0500 | 783 | 0.9000 | 1565 |
CURLY20 | 1000 | 0.1000 | 303 | NaN | 306 | 0.9000 | 620 |
DIXMAANI | 6000 | 0.1000 | 296 | NaN | 275 | 0.9000 | 557 |
EIGENBLS | 420 | 0.1000 | 8726 | NaN | 2428 | 0.9000 | NaN |
[1] |
Wataru Nakamura, Yasushi Narushima, Hiroshi Yabe. Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (3) : 595-619. doi: 10.3934/jimo.2013.9.595 |
[2] |
Gaohang Yu, Lutai Guan, Guoyin Li. Global convergence of modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property. Journal of Industrial & Management Optimization, 2008, 4 (3) : 565-579. doi: 10.3934/jimo.2008.4.565 |
[3] |
Guanghui Zhou, Qin Ni, Meilan Zeng. A scaled conjugate gradient method with moving asymptotes for unconstrained optimization problems. Journal of Industrial & Management Optimization, 2017, 13 (2) : 595-608. doi: 10.3934/jimo.2016034 |
[4] |
Yigui Ou, Xin Zhou. A modified scaled memoryless BFGS preconditioned conjugate gradient algorithm for nonsmooth convex optimization. Journal of Industrial & Management Optimization, 2018, 14 (2) : 785-801. doi: 10.3934/jimo.2017075 |
[5] |
Shishun Li, Zhengda Huang. Guaranteed descent conjugate gradient methods with modified secant condition. Journal of Industrial & Management Optimization, 2008, 4 (4) : 739-755. doi: 10.3934/jimo.2008.4.739 |
[6] |
Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial & Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415 |
[7] |
Saman Babaie–Kafaki, Reza Ghanbari. A class of descent four–term extension of the Dai–Liao conjugate gradient method based on the scaled memoryless BFGS update. Journal of Industrial & Management Optimization, 2017, 13 (2) : 649-658. doi: 10.3934/jimo.2016038 |
[8] |
Feng Bao, Thomas Maier. Stochastic gradient descent algorithm for stochastic optimization in solving analytic continuation problems. Foundations of Data Science, 2020, 2 (1) : 1-17. doi: 10.3934/fods.2020001 |
[9] |
C.Y. Wang, M.X. Li. Convergence property of the Fletcher-Reeves conjugate gradient method with errors. Journal of Industrial & Management Optimization, 2005, 1 (2) : 193-200. doi: 10.3934/jimo.2005.1.193 |
[10] |
El-Sayed M.E. Mostafa. A nonlinear conjugate gradient method for a special class of matrix optimization problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 883-903. doi: 10.3934/jimo.2014.10.883 |
[11] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[12] |
Zhong Wan, Chaoming Hu, Zhanlu Yang. A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1157-1169. doi: 10.3934/dcdsb.2011.16.1157 |
[13] |
Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070 |
[14] |
Sanming Liu, Zhijie Wang, Chongyang Liu. On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 389-402. doi: 10.3934/jimo.2016.12.389 |
[15] |
Mohamed Aly Tawhid. Nonsmooth generalized complementarity as unconstrained optimization. Journal of Industrial & Management Optimization, 2010, 6 (2) : 411-423. doi: 10.3934/jimo.2010.6.411 |
[16] |
Yong Xia. New sufficient global optimality conditions for linearly constrained bivalent quadratic optimization problems. Journal of Industrial & Management Optimization, 2009, 5 (4) : 881-892. doi: 10.3934/jimo.2009.5.881 |
[17] |
King Hann Lim, Hong Hui Tan, Hendra G. Harno. Approximate greatest descent in neural network optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 327-336. doi: 10.3934/naco.2018021 |
[18] |
Chunlin Hao, Xinwei Liu. Global convergence of an SQP algorithm for nonlinear optimization with overdetermined constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 19-29. doi: 10.3934/naco.2012.2.19 |
[19] |
Xuan Wang, Shaoshuai Mou, Shreyas Sundaram. A resilient convex combination for consensus-based distributed algorithms. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 269-281. doi: 10.3934/naco.2019018 |
[20] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
Impact Factor:
Tools
Article outline
Figures and Tables
[Back to Top]