September  2021, 11(3): 391-405. doi: 10.3934/naco.2020033

Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey

1. 

Department of Applied Science, Haldia Institute of Technology, Haldia-721657, W. B., India

2. 

Department of Mathematics, Ramsaday College, Amta, Howrah, India

3. 

Department of Applied Mathematics with Oceanology, and Computer Programming, Vidyasagar University, Midnapore -721102, W. B., India

* Corresponding author: Prabir Panja, prabirpanja@gmail.com

Received  February 2020 Revised  February 2020 Published  May 2020

In this paper, a predator-prey interaction model among juvenile prey, adult prey and predator has been developed where stage structure is considered on prey species. The functional responses has been considered as ratio dependent. It is assumed that that the adult prey is strong enough such that it has an anti-predator characteristic. Global dynamics of the co-existing equilibrium point has been discussed with the help of the geometric approach. Furthermore, it is established that the proposed system undergoes through a Hopf bifurcation with respect to some important parameters. Finally, some numerical simulations have been done to test our theoretical results.

Citation: Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033
References:
[1]

M. Andersson and C. G. Wiklund, Clumping versus spacing out: Experiments on nest predation in fieldfares (Turdus pilaris), Animal Behavior, 26 (1978), 1207-1212.   Google Scholar

[2]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics ratio dependence, Journal of Theoretical Biology, 139 (1989), 311-326.   Google Scholar

[3]

O. ArinoA. AbdllaouiJ. Mikram and J. Chattopadhyay, Infection on prey population may act as biological control in ratio-dependent predator-prey model, Nonlinearity, 17 (2004), 1101-1116.  doi: 10.1088/0951-7715/17/3/018.  Google Scholar

[4]

M. Bandyopadhyay and J. Chattopadhyay, Ratio-dependent predator-prey model: Effect of environmental fluctuation and stability, Nonlinearity, 18 (2005), 913-936.  doi: 10.1088/0951-7715/18/2/022.  Google Scholar

[5]

M. Banerjee, Self-replication of spatial patterns in a ratio-dependent predator-prey model, Mathematical and Computer Modelling, 51 (2010), 44-52.  doi: 10.1016/j.mcm.2009.07.015.  Google Scholar

[6]

A. A. Berryman, The origin and evolution of predator-prey theory, Ecology, 73 (1992), 1530-1535.   Google Scholar

[7]

G. Birkoff, G. C. Rota, Ordinary Differential Equations, Ginn, Boston, 1982.  Google Scholar

[8]

Y. ChohM. LgnacioM. W. Sabelis and A. Janssen, Predator-prey role reversale, juvenile experience and adult antipredator behavior, Scientific Reports, 2 (2012), 7-28.   Google Scholar

[9]

Y. H. Fan and W. T. Li, Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response, Journal of Mathematical Analysis and Applications, 299 (2004), 357-374.  doi: 10.1016/j.jmaa.2004.02.061.  Google Scholar

[10]

H. I. Freedman and A. M. Mathsen, Persistence in predator-prey systems with ratio-dependent predator influence, Bulletin of Mathematical Biology, 55 (1993), 817-827.   Google Scholar

[11]

S. Gakkhar and K. Negi, A mathematical model for viral infection in toxin producing phytoplankton and zooplankton system, Applied Mathematics and Computation, 179 (2006), 301-313.  doi: 10.1016/j.amc.2005.11.166.  Google Scholar

[12]

A. HugoE. S. Massawe and O. D. Makinde, An ecoepidemiological mathematical model with treatment and disease infection in both prey and predator population, Journal of Ecology and The Natural Environment, 4 (2012), 266-279.  doi: 10.1016/j.physa.2013.07.077.  Google Scholar

[13]

A. JanssenF. FarajiT. Van Der HammenS. Magalhaes and M. W. Sabelis, Interspecific infanticide deters predators, Ecology Letters, 5 (2002), 490-494.   Google Scholar

[14]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 43 (2001), 221-290.  doi: 10.1007/s002850100097.  Google Scholar

[15]

M. Y. Li and J. S. Muldowney, A geometric approach global stability problems, SIAM Journal on Mathematical Analysis, 27 (1996), 1070-1083.  doi: 10.1137/S0036141094266449.  Google Scholar

[16]

A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925. Google Scholar

[17]

P. Panja and S. K. Mondal, Stability analysis of coexistence of three species prey-predator model, Nonlinear Dynamics, 81 (2015), 373-382.  doi: 10.1007/s11071-015-1997-1.  Google Scholar

[18]

Y. PeiL. ChenQ. Zhang and C. Li, Extinction and permanence of one-preymulti-predators of Holling type Ⅱ function response system with impulsive biological control, Journal of Theoretical Biology, 235 (2005), 495-503.  doi: 10.1016/j.jtbi.2005.02.003.  Google Scholar

[19]

G. A. PolisC. A. Myers and R. D. Holt, The ecology and evaluation of intraguild predation-potential competitors that eat each other, Annual Review of Ecology and Systematics, 20 (1989), 297-330.   Google Scholar

[20]

S. RuanA. ArditoP. Ricciardi and D. L. DeAngalis, Coexistence in competition models with density dependent mortality, Comptes Rendus Biologies, 330 (2007), 845-854.   Google Scholar

[21]

C. B. Stanford, The influence of chimpanzee predation on group size and anti-predator behavior in red colobus monkeys, Animal Behavior, 49 (1995), 577-587.   Google Scholar

[22]

B. Tang and Y. Xiao, Bifurcation analysis of a predator-prey model with anti-predator behavior, Chaos, Solitons & Fractals, 70 (2015), 58-68.  doi: 10.1016/j.chaos.2014.11.008.  Google Scholar

[23]

F. Wei and Q. Fu, Hopf bifurcation and stability for predator-prey systems with Beddington-DeAngelis type functional response and stage structure for prey incorporating refuge, Applied Mathematical Modelling, 40 (2016), 126-134.  doi: 10.1016/j.apm.2015.04.042.  Google Scholar

show all references

References:
[1]

M. Andersson and C. G. Wiklund, Clumping versus spacing out: Experiments on nest predation in fieldfares (Turdus pilaris), Animal Behavior, 26 (1978), 1207-1212.   Google Scholar

[2]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics ratio dependence, Journal of Theoretical Biology, 139 (1989), 311-326.   Google Scholar

[3]

O. ArinoA. AbdllaouiJ. Mikram and J. Chattopadhyay, Infection on prey population may act as biological control in ratio-dependent predator-prey model, Nonlinearity, 17 (2004), 1101-1116.  doi: 10.1088/0951-7715/17/3/018.  Google Scholar

[4]

M. Bandyopadhyay and J. Chattopadhyay, Ratio-dependent predator-prey model: Effect of environmental fluctuation and stability, Nonlinearity, 18 (2005), 913-936.  doi: 10.1088/0951-7715/18/2/022.  Google Scholar

[5]

M. Banerjee, Self-replication of spatial patterns in a ratio-dependent predator-prey model, Mathematical and Computer Modelling, 51 (2010), 44-52.  doi: 10.1016/j.mcm.2009.07.015.  Google Scholar

[6]

A. A. Berryman, The origin and evolution of predator-prey theory, Ecology, 73 (1992), 1530-1535.   Google Scholar

[7]

G. Birkoff, G. C. Rota, Ordinary Differential Equations, Ginn, Boston, 1982.  Google Scholar

[8]

Y. ChohM. LgnacioM. W. Sabelis and A. Janssen, Predator-prey role reversale, juvenile experience and adult antipredator behavior, Scientific Reports, 2 (2012), 7-28.   Google Scholar

[9]

Y. H. Fan and W. T. Li, Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response, Journal of Mathematical Analysis and Applications, 299 (2004), 357-374.  doi: 10.1016/j.jmaa.2004.02.061.  Google Scholar

[10]

H. I. Freedman and A. M. Mathsen, Persistence in predator-prey systems with ratio-dependent predator influence, Bulletin of Mathematical Biology, 55 (1993), 817-827.   Google Scholar

[11]

S. Gakkhar and K. Negi, A mathematical model for viral infection in toxin producing phytoplankton and zooplankton system, Applied Mathematics and Computation, 179 (2006), 301-313.  doi: 10.1016/j.amc.2005.11.166.  Google Scholar

[12]

A. HugoE. S. Massawe and O. D. Makinde, An ecoepidemiological mathematical model with treatment and disease infection in both prey and predator population, Journal of Ecology and The Natural Environment, 4 (2012), 266-279.  doi: 10.1016/j.physa.2013.07.077.  Google Scholar

[13]

A. JanssenF. FarajiT. Van Der HammenS. Magalhaes and M. W. Sabelis, Interspecific infanticide deters predators, Ecology Letters, 5 (2002), 490-494.   Google Scholar

[14]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 43 (2001), 221-290.  doi: 10.1007/s002850100097.  Google Scholar

[15]

M. Y. Li and J. S. Muldowney, A geometric approach global stability problems, SIAM Journal on Mathematical Analysis, 27 (1996), 1070-1083.  doi: 10.1137/S0036141094266449.  Google Scholar

[16]

A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925. Google Scholar

[17]

P. Panja and S. K. Mondal, Stability analysis of coexistence of three species prey-predator model, Nonlinear Dynamics, 81 (2015), 373-382.  doi: 10.1007/s11071-015-1997-1.  Google Scholar

[18]

Y. PeiL. ChenQ. Zhang and C. Li, Extinction and permanence of one-preymulti-predators of Holling type Ⅱ function response system with impulsive biological control, Journal of Theoretical Biology, 235 (2005), 495-503.  doi: 10.1016/j.jtbi.2005.02.003.  Google Scholar

[19]

G. A. PolisC. A. Myers and R. D. Holt, The ecology and evaluation of intraguild predation-potential competitors that eat each other, Annual Review of Ecology and Systematics, 20 (1989), 297-330.   Google Scholar

[20]

S. RuanA. ArditoP. Ricciardi and D. L. DeAngalis, Coexistence in competition models with density dependent mortality, Comptes Rendus Biologies, 330 (2007), 845-854.   Google Scholar

[21]

C. B. Stanford, The influence of chimpanzee predation on group size and anti-predator behavior in red colobus monkeys, Animal Behavior, 49 (1995), 577-587.   Google Scholar

[22]

B. Tang and Y. Xiao, Bifurcation analysis of a predator-prey model with anti-predator behavior, Chaos, Solitons & Fractals, 70 (2015), 58-68.  doi: 10.1016/j.chaos.2014.11.008.  Google Scholar

[23]

F. Wei and Q. Fu, Hopf bifurcation and stability for predator-prey systems with Beddington-DeAngelis type functional response and stage structure for prey incorporating refuge, Applied Mathematical Modelling, 40 (2016), 126-134.  doi: 10.1016/j.apm.2015.04.042.  Google Scholar

Figure 1.  Local stability of the equilibrium point $ E_1 $
Figure 2.  Local stability of the equilibrium point $ E^{*} $
Figure 3.  Global stability of interior equilibrium
Figure 4.  Bifurcation diagram of system $ (1) $ with respect to $ \eta $
Figure 5.  Bifurcation diagram of system $ (1) $ with respect to $ \beta $
Figure 6.  Bifurcation diagram of system $ (1) $ with respect to $ \beta_1 $
Figure 7.  Bifurcation diagram of system $ (1) $ with respect to $ \beta_2 $
Figure 8.  Bifurcation diagram of system $ (1) $ with respect to $ \gamma $
[1]

Qian Cao, Yongli Cai, Yong Luo. Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021095

[2]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[3]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[4]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[5]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[6]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[7]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032

[8]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[9]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[10]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[11]

Anastasiia Panchuk, Frank Westerhoff. Speculative behavior and chaotic asset price dynamics: On the emergence of a bandcount accretion bifurcation structure. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021117

[12]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[13]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[14]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[15]

Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021035

[16]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[17]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[18]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[19]

Wen Si. Response solutions for degenerate reversible harmonic oscillators. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3951-3972. doi: 10.3934/dcds.2021023

[20]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

 Impact Factor: 

Metrics

  • PDF downloads (133)
  • HTML views (338)
  • Cited by (0)

[Back to Top]