doi: 10.3934/naco.2020033

Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey

1. 

Department of Applied Science, Haldia Institute of Technology, Haldia-721657, W. B., India

2. 

Department of Mathematics, Ramsaday College, Amta, Howrah, India

3. 

Department of Applied Mathematics with Oceanology, and Computer Programming, Vidyasagar University, Midnapore -721102, W. B., India

* Corresponding author: Prabir Panja, prabirpanja@gmail.com

Received  February 2020 Revised  February 2020 Published  May 2020

In this paper, a predator-prey interaction model among juvenile prey, adult prey and predator has been developed where stage structure is considered on prey species. The functional responses has been considered as ratio dependent. It is assumed that that the adult prey is strong enough such that it has an anti-predator characteristic. Global dynamics of the co-existing equilibrium point has been discussed with the help of the geometric approach. Furthermore, it is established that the proposed system undergoes through a Hopf bifurcation with respect to some important parameters. Finally, some numerical simulations have been done to test our theoretical results.

Citation: Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2020033
References:
[1]

M. Andersson and C. G. Wiklund, Clumping versus spacing out: Experiments on nest predation in fieldfares (Turdus pilaris), Animal Behavior, 26 (1978), 1207-1212.   Google Scholar

[2]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics ratio dependence, Journal of Theoretical Biology, 139 (1989), 311-326.   Google Scholar

[3]

O. ArinoA. AbdllaouiJ. Mikram and J. Chattopadhyay, Infection on prey population may act as biological control in ratio-dependent predator-prey model, Nonlinearity, 17 (2004), 1101-1116.  doi: 10.1088/0951-7715/17/3/018.  Google Scholar

[4]

M. Bandyopadhyay and J. Chattopadhyay, Ratio-dependent predator-prey model: Effect of environmental fluctuation and stability, Nonlinearity, 18 (2005), 913-936.  doi: 10.1088/0951-7715/18/2/022.  Google Scholar

[5]

M. Banerjee, Self-replication of spatial patterns in a ratio-dependent predator-prey model, Mathematical and Computer Modelling, 51 (2010), 44-52.  doi: 10.1016/j.mcm.2009.07.015.  Google Scholar

[6]

A. A. Berryman, The origin and evolution of predator-prey theory, Ecology, 73 (1992), 1530-1535.   Google Scholar

[7]

G. Birkoff, G. C. Rota, Ordinary Differential Equations, Ginn, Boston, 1982.  Google Scholar

[8]

Y. ChohM. LgnacioM. W. Sabelis and A. Janssen, Predator-prey role reversale, juvenile experience and adult antipredator behavior, Scientific Reports, 2 (2012), 7-28.   Google Scholar

[9]

Y. H. Fan and W. T. Li, Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response, Journal of Mathematical Analysis and Applications, 299 (2004), 357-374.  doi: 10.1016/j.jmaa.2004.02.061.  Google Scholar

[10]

H. I. Freedman and A. M. Mathsen, Persistence in predator-prey systems with ratio-dependent predator influence, Bulletin of Mathematical Biology, 55 (1993), 817-827.   Google Scholar

[11]

S. Gakkhar and K. Negi, A mathematical model for viral infection in toxin producing phytoplankton and zooplankton system, Applied Mathematics and Computation, 179 (2006), 301-313.  doi: 10.1016/j.amc.2005.11.166.  Google Scholar

[12]

A. HugoE. S. Massawe and O. D. Makinde, An ecoepidemiological mathematical model with treatment and disease infection in both prey and predator population, Journal of Ecology and The Natural Environment, 4 (2012), 266-279.  doi: 10.1016/j.physa.2013.07.077.  Google Scholar

[13]

A. JanssenF. FarajiT. Van Der HammenS. Magalhaes and M. W. Sabelis, Interspecific infanticide deters predators, Ecology Letters, 5 (2002), 490-494.   Google Scholar

[14]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 43 (2001), 221-290.  doi: 10.1007/s002850100097.  Google Scholar

[15]

M. Y. Li and J. S. Muldowney, A geometric approach global stability problems, SIAM Journal on Mathematical Analysis, 27 (1996), 1070-1083.  doi: 10.1137/S0036141094266449.  Google Scholar

[16]

A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925. Google Scholar

[17]

P. Panja and S. K. Mondal, Stability analysis of coexistence of three species prey-predator model, Nonlinear Dynamics, 81 (2015), 373-382.  doi: 10.1007/s11071-015-1997-1.  Google Scholar

[18]

Y. PeiL. ChenQ. Zhang and C. Li, Extinction and permanence of one-preymulti-predators of Holling type Ⅱ function response system with impulsive biological control, Journal of Theoretical Biology, 235 (2005), 495-503.  doi: 10.1016/j.jtbi.2005.02.003.  Google Scholar

[19]

G. A. PolisC. A. Myers and R. D. Holt, The ecology and evaluation of intraguild predation-potential competitors that eat each other, Annual Review of Ecology and Systematics, 20 (1989), 297-330.   Google Scholar

[20]

S. RuanA. ArditoP. Ricciardi and D. L. DeAngalis, Coexistence in competition models with density dependent mortality, Comptes Rendus Biologies, 330 (2007), 845-854.   Google Scholar

[21]

C. B. Stanford, The influence of chimpanzee predation on group size and anti-predator behavior in red colobus monkeys, Animal Behavior, 49 (1995), 577-587.   Google Scholar

[22]

B. Tang and Y. Xiao, Bifurcation analysis of a predator-prey model with anti-predator behavior, Chaos, Solitons & Fractals, 70 (2015), 58-68.  doi: 10.1016/j.chaos.2014.11.008.  Google Scholar

[23]

F. Wei and Q. Fu, Hopf bifurcation and stability for predator-prey systems with Beddington-DeAngelis type functional response and stage structure for prey incorporating refuge, Applied Mathematical Modelling, 40 (2016), 126-134.  doi: 10.1016/j.apm.2015.04.042.  Google Scholar

show all references

References:
[1]

M. Andersson and C. G. Wiklund, Clumping versus spacing out: Experiments on nest predation in fieldfares (Turdus pilaris), Animal Behavior, 26 (1978), 1207-1212.   Google Scholar

[2]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics ratio dependence, Journal of Theoretical Biology, 139 (1989), 311-326.   Google Scholar

[3]

O. ArinoA. AbdllaouiJ. Mikram and J. Chattopadhyay, Infection on prey population may act as biological control in ratio-dependent predator-prey model, Nonlinearity, 17 (2004), 1101-1116.  doi: 10.1088/0951-7715/17/3/018.  Google Scholar

[4]

M. Bandyopadhyay and J. Chattopadhyay, Ratio-dependent predator-prey model: Effect of environmental fluctuation and stability, Nonlinearity, 18 (2005), 913-936.  doi: 10.1088/0951-7715/18/2/022.  Google Scholar

[5]

M. Banerjee, Self-replication of spatial patterns in a ratio-dependent predator-prey model, Mathematical and Computer Modelling, 51 (2010), 44-52.  doi: 10.1016/j.mcm.2009.07.015.  Google Scholar

[6]

A. A. Berryman, The origin and evolution of predator-prey theory, Ecology, 73 (1992), 1530-1535.   Google Scholar

[7]

G. Birkoff, G. C. Rota, Ordinary Differential Equations, Ginn, Boston, 1982.  Google Scholar

[8]

Y. ChohM. LgnacioM. W. Sabelis and A. Janssen, Predator-prey role reversale, juvenile experience and adult antipredator behavior, Scientific Reports, 2 (2012), 7-28.   Google Scholar

[9]

Y. H. Fan and W. T. Li, Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response, Journal of Mathematical Analysis and Applications, 299 (2004), 357-374.  doi: 10.1016/j.jmaa.2004.02.061.  Google Scholar

[10]

H. I. Freedman and A. M. Mathsen, Persistence in predator-prey systems with ratio-dependent predator influence, Bulletin of Mathematical Biology, 55 (1993), 817-827.   Google Scholar

[11]

S. Gakkhar and K. Negi, A mathematical model for viral infection in toxin producing phytoplankton and zooplankton system, Applied Mathematics and Computation, 179 (2006), 301-313.  doi: 10.1016/j.amc.2005.11.166.  Google Scholar

[12]

A. HugoE. S. Massawe and O. D. Makinde, An ecoepidemiological mathematical model with treatment and disease infection in both prey and predator population, Journal of Ecology and The Natural Environment, 4 (2012), 266-279.  doi: 10.1016/j.physa.2013.07.077.  Google Scholar

[13]

A. JanssenF. FarajiT. Van Der HammenS. Magalhaes and M. W. Sabelis, Interspecific infanticide deters predators, Ecology Letters, 5 (2002), 490-494.   Google Scholar

[14]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 43 (2001), 221-290.  doi: 10.1007/s002850100097.  Google Scholar

[15]

M. Y. Li and J. S. Muldowney, A geometric approach global stability problems, SIAM Journal on Mathematical Analysis, 27 (1996), 1070-1083.  doi: 10.1137/S0036141094266449.  Google Scholar

[16]

A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925. Google Scholar

[17]

P. Panja and S. K. Mondal, Stability analysis of coexistence of three species prey-predator model, Nonlinear Dynamics, 81 (2015), 373-382.  doi: 10.1007/s11071-015-1997-1.  Google Scholar

[18]

Y. PeiL. ChenQ. Zhang and C. Li, Extinction and permanence of one-preymulti-predators of Holling type Ⅱ function response system with impulsive biological control, Journal of Theoretical Biology, 235 (2005), 495-503.  doi: 10.1016/j.jtbi.2005.02.003.  Google Scholar

[19]

G. A. PolisC. A. Myers and R. D. Holt, The ecology and evaluation of intraguild predation-potential competitors that eat each other, Annual Review of Ecology and Systematics, 20 (1989), 297-330.   Google Scholar

[20]

S. RuanA. ArditoP. Ricciardi and D. L. DeAngalis, Coexistence in competition models with density dependent mortality, Comptes Rendus Biologies, 330 (2007), 845-854.   Google Scholar

[21]

C. B. Stanford, The influence of chimpanzee predation on group size and anti-predator behavior in red colobus monkeys, Animal Behavior, 49 (1995), 577-587.   Google Scholar

[22]

B. Tang and Y. Xiao, Bifurcation analysis of a predator-prey model with anti-predator behavior, Chaos, Solitons & Fractals, 70 (2015), 58-68.  doi: 10.1016/j.chaos.2014.11.008.  Google Scholar

[23]

F. Wei and Q. Fu, Hopf bifurcation and stability for predator-prey systems with Beddington-DeAngelis type functional response and stage structure for prey incorporating refuge, Applied Mathematical Modelling, 40 (2016), 126-134.  doi: 10.1016/j.apm.2015.04.042.  Google Scholar

Figure 1.  Local stability of the equilibrium point $ E_1 $
Figure 2.  Local stability of the equilibrium point $ E^{*} $
Figure 3.  Global stability of interior equilibrium
Figure 4.  Bifurcation diagram of system $ (1) $ with respect to $ \eta $
Figure 5.  Bifurcation diagram of system $ (1) $ with respect to $ \beta $
Figure 6.  Bifurcation diagram of system $ (1) $ with respect to $ \beta_1 $
Figure 7.  Bifurcation diagram of system $ (1) $ with respect to $ \beta_2 $
Figure 8.  Bifurcation diagram of system $ (1) $ with respect to $ \gamma $
[1]

Xin Jiang, Zhikun She, Shigui Ruan. Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020041

[2]

Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214

[3]

Xiao He, Sining Zheng. Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020117

[4]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[5]

Inkyung Ahn, Wonlyul Ko, Kimun Ryu. Asymptotic behavior of a ratio-dependent predator-prey system with disease in the prey. Conference Publications, 2013, 2013 (special) : 11-19. doi: 10.3934/proc.2013.2013.11

[6]

Jaume Llibre, Claudio Vidal. Hopf periodic orbits for a ratio--dependent predator--prey model with stage structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1859-1867. doi: 10.3934/dcdsb.2016026

[7]

Xiaoying Wang, Xingfu Zou. Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences & Engineering, 2018, 15 (3) : 775-805. doi: 10.3934/mbe.2018035

[8]

Xinyu Song, Liming Cai, U. Neumann. Ratio-dependent predator-prey system with stage structure for prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 747-758. doi: 10.3934/dcdsb.2004.4.747

[9]

Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semi-ratio-dependent predator-prey dynamical system with a class of functional responses on time scales. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 267-279. doi: 10.3934/dcdsb.2008.9.267

[10]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[11]

Haiyin Li, Yasuhiro Takeuchi. Dynamics of the density dependent and nonautonomous predator-prey system with Beddington-DeAngelis functional response. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1117-1134. doi: 10.3934/dcdsb.2015.20.1117

[12]

Sze-Bi Hsu, Tzy-Wei Hwang, Yang Kuang. Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 857-871. doi: 10.3934/dcdsb.2008.10.857

[13]

Benjamin Leard, Catherine Lewis, Jorge Rebaza. Dynamics of ratio-dependent Predator-Prey models with nonconstant harvesting. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 303-315. doi: 10.3934/dcdss.2008.1.303

[14]

Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321

[15]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[16]

Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607

[17]

Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175

[18]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[19]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[20]

Kexin Wang. Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1699-1714. doi: 10.3934/dcdsb.2019247

 Impact Factor: 

Metrics

  • PDF downloads (24)
  • HTML views (20)
  • Cited by (0)

[Back to Top]