• Previous Article
    A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk
  • NACO Home
  • This Issue
  • Next Article
    Approximate controllability of a non-autonomous evolution equation in Banach spaces
doi: 10.3934/naco.2020033

Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey

1. 

Department of Applied Science, Haldia Institute of Technology, Haldia-721657, W. B., India

2. 

Department of Mathematics, Ramsaday College, Amta, Howrah, India

3. 

Department of Applied Mathematics with Oceanology, and Computer Programming, Vidyasagar University, Midnapore -721102, W. B., India

* Corresponding author: Prabir Panja, prabirpanja@gmail.com

Received  February 2020 Revised  February 2020 Published  May 2020

In this paper, a predator-prey interaction model among juvenile prey, adult prey and predator has been developed where stage structure is considered on prey species. The functional responses has been considered as ratio dependent. It is assumed that that the adult prey is strong enough such that it has an anti-predator characteristic. Global dynamics of the co-existing equilibrium point has been discussed with the help of the geometric approach. Furthermore, it is established that the proposed system undergoes through a Hopf bifurcation with respect to some important parameters. Finally, some numerical simulations have been done to test our theoretical results.

Citation: Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2020033
References:
[1]

M. Andersson and C. G. Wiklund, Clumping versus spacing out: Experiments on nest predation in fieldfares (Turdus pilaris), Animal Behavior, 26 (1978), 1207-1212.   Google Scholar

[2]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics ratio dependence, Journal of Theoretical Biology, 139 (1989), 311-326.   Google Scholar

[3]

O. ArinoA. AbdllaouiJ. Mikram and J. Chattopadhyay, Infection on prey population may act as biological control in ratio-dependent predator-prey model, Nonlinearity, 17 (2004), 1101-1116.  doi: 10.1088/0951-7715/17/3/018.  Google Scholar

[4]

M. Bandyopadhyay and J. Chattopadhyay, Ratio-dependent predator-prey model: Effect of environmental fluctuation and stability, Nonlinearity, 18 (2005), 913-936.  doi: 10.1088/0951-7715/18/2/022.  Google Scholar

[5]

M. Banerjee, Self-replication of spatial patterns in a ratio-dependent predator-prey model, Mathematical and Computer Modelling, 51 (2010), 44-52.  doi: 10.1016/j.mcm.2009.07.015.  Google Scholar

[6]

A. A. Berryman, The origin and evolution of predator-prey theory, Ecology, 73 (1992), 1530-1535.   Google Scholar

[7]

G. Birkoff, G. C. Rota, Ordinary Differential Equations, Ginn, Boston, 1982.  Google Scholar

[8]

Y. ChohM. LgnacioM. W. Sabelis and A. Janssen, Predator-prey role reversale, juvenile experience and adult antipredator behavior, Scientific Reports, 2 (2012), 7-28.   Google Scholar

[9]

Y. H. Fan and W. T. Li, Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response, Journal of Mathematical Analysis and Applications, 299 (2004), 357-374.  doi: 10.1016/j.jmaa.2004.02.061.  Google Scholar

[10]

H. I. Freedman and A. M. Mathsen, Persistence in predator-prey systems with ratio-dependent predator influence, Bulletin of Mathematical Biology, 55 (1993), 817-827.   Google Scholar

[11]

S. Gakkhar and K. Negi, A mathematical model for viral infection in toxin producing phytoplankton and zooplankton system, Applied Mathematics and Computation, 179 (2006), 301-313.  doi: 10.1016/j.amc.2005.11.166.  Google Scholar

[12]

A. HugoE. S. Massawe and O. D. Makinde, An ecoepidemiological mathematical model with treatment and disease infection in both prey and predator population, Journal of Ecology and The Natural Environment, 4 (2012), 266-279.  doi: 10.1016/j.physa.2013.07.077.  Google Scholar

[13]

A. JanssenF. FarajiT. Van Der HammenS. Magalhaes and M. W. Sabelis, Interspecific infanticide deters predators, Ecology Letters, 5 (2002), 490-494.   Google Scholar

[14]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 43 (2001), 221-290.  doi: 10.1007/s002850100097.  Google Scholar

[15]

M. Y. Li and J. S. Muldowney, A geometric approach global stability problems, SIAM Journal on Mathematical Analysis, 27 (1996), 1070-1083.  doi: 10.1137/S0036141094266449.  Google Scholar

[16]

A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925. Google Scholar

[17]

P. Panja and S. K. Mondal, Stability analysis of coexistence of three species prey-predator model, Nonlinear Dynamics, 81 (2015), 373-382.  doi: 10.1007/s11071-015-1997-1.  Google Scholar

[18]

Y. PeiL. ChenQ. Zhang and C. Li, Extinction and permanence of one-preymulti-predators of Holling type Ⅱ function response system with impulsive biological control, Journal of Theoretical Biology, 235 (2005), 495-503.  doi: 10.1016/j.jtbi.2005.02.003.  Google Scholar

[19]

G. A. PolisC. A. Myers and R. D. Holt, The ecology and evaluation of intraguild predation-potential competitors that eat each other, Annual Review of Ecology and Systematics, 20 (1989), 297-330.   Google Scholar

[20]

S. RuanA. ArditoP. Ricciardi and D. L. DeAngalis, Coexistence in competition models with density dependent mortality, Comptes Rendus Biologies, 330 (2007), 845-854.   Google Scholar

[21]

C. B. Stanford, The influence of chimpanzee predation on group size and anti-predator behavior in red colobus monkeys, Animal Behavior, 49 (1995), 577-587.   Google Scholar

[22]

B. Tang and Y. Xiao, Bifurcation analysis of a predator-prey model with anti-predator behavior, Chaos, Solitons & Fractals, 70 (2015), 58-68.  doi: 10.1016/j.chaos.2014.11.008.  Google Scholar

[23]

F. Wei and Q. Fu, Hopf bifurcation and stability for predator-prey systems with Beddington-DeAngelis type functional response and stage structure for prey incorporating refuge, Applied Mathematical Modelling, 40 (2016), 126-134.  doi: 10.1016/j.apm.2015.04.042.  Google Scholar

show all references

References:
[1]

M. Andersson and C. G. Wiklund, Clumping versus spacing out: Experiments on nest predation in fieldfares (Turdus pilaris), Animal Behavior, 26 (1978), 1207-1212.   Google Scholar

[2]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics ratio dependence, Journal of Theoretical Biology, 139 (1989), 311-326.   Google Scholar

[3]

O. ArinoA. AbdllaouiJ. Mikram and J. Chattopadhyay, Infection on prey population may act as biological control in ratio-dependent predator-prey model, Nonlinearity, 17 (2004), 1101-1116.  doi: 10.1088/0951-7715/17/3/018.  Google Scholar

[4]

M. Bandyopadhyay and J. Chattopadhyay, Ratio-dependent predator-prey model: Effect of environmental fluctuation and stability, Nonlinearity, 18 (2005), 913-936.  doi: 10.1088/0951-7715/18/2/022.  Google Scholar

[5]

M. Banerjee, Self-replication of spatial patterns in a ratio-dependent predator-prey model, Mathematical and Computer Modelling, 51 (2010), 44-52.  doi: 10.1016/j.mcm.2009.07.015.  Google Scholar

[6]

A. A. Berryman, The origin and evolution of predator-prey theory, Ecology, 73 (1992), 1530-1535.   Google Scholar

[7]

G. Birkoff, G. C. Rota, Ordinary Differential Equations, Ginn, Boston, 1982.  Google Scholar

[8]

Y. ChohM. LgnacioM. W. Sabelis and A. Janssen, Predator-prey role reversale, juvenile experience and adult antipredator behavior, Scientific Reports, 2 (2012), 7-28.   Google Scholar

[9]

Y. H. Fan and W. T. Li, Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response, Journal of Mathematical Analysis and Applications, 299 (2004), 357-374.  doi: 10.1016/j.jmaa.2004.02.061.  Google Scholar

[10]

H. I. Freedman and A. M. Mathsen, Persistence in predator-prey systems with ratio-dependent predator influence, Bulletin of Mathematical Biology, 55 (1993), 817-827.   Google Scholar

[11]

S. Gakkhar and K. Negi, A mathematical model for viral infection in toxin producing phytoplankton and zooplankton system, Applied Mathematics and Computation, 179 (2006), 301-313.  doi: 10.1016/j.amc.2005.11.166.  Google Scholar

[12]

A. HugoE. S. Massawe and O. D. Makinde, An ecoepidemiological mathematical model with treatment and disease infection in both prey and predator population, Journal of Ecology and The Natural Environment, 4 (2012), 266-279.  doi: 10.1016/j.physa.2013.07.077.  Google Scholar

[13]

A. JanssenF. FarajiT. Van Der HammenS. Magalhaes and M. W. Sabelis, Interspecific infanticide deters predators, Ecology Letters, 5 (2002), 490-494.   Google Scholar

[14]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 43 (2001), 221-290.  doi: 10.1007/s002850100097.  Google Scholar

[15]

M. Y. Li and J. S. Muldowney, A geometric approach global stability problems, SIAM Journal on Mathematical Analysis, 27 (1996), 1070-1083.  doi: 10.1137/S0036141094266449.  Google Scholar

[16]

A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925. Google Scholar

[17]

P. Panja and S. K. Mondal, Stability analysis of coexistence of three species prey-predator model, Nonlinear Dynamics, 81 (2015), 373-382.  doi: 10.1007/s11071-015-1997-1.  Google Scholar

[18]

Y. PeiL. ChenQ. Zhang and C. Li, Extinction and permanence of one-preymulti-predators of Holling type Ⅱ function response system with impulsive biological control, Journal of Theoretical Biology, 235 (2005), 495-503.  doi: 10.1016/j.jtbi.2005.02.003.  Google Scholar

[19]

G. A. PolisC. A. Myers and R. D. Holt, The ecology and evaluation of intraguild predation-potential competitors that eat each other, Annual Review of Ecology and Systematics, 20 (1989), 297-330.   Google Scholar

[20]

S. RuanA. ArditoP. Ricciardi and D. L. DeAngalis, Coexistence in competition models with density dependent mortality, Comptes Rendus Biologies, 330 (2007), 845-854.   Google Scholar

[21]

C. B. Stanford, The influence of chimpanzee predation on group size and anti-predator behavior in red colobus monkeys, Animal Behavior, 49 (1995), 577-587.   Google Scholar

[22]

B. Tang and Y. Xiao, Bifurcation analysis of a predator-prey model with anti-predator behavior, Chaos, Solitons & Fractals, 70 (2015), 58-68.  doi: 10.1016/j.chaos.2014.11.008.  Google Scholar

[23]

F. Wei and Q. Fu, Hopf bifurcation and stability for predator-prey systems with Beddington-DeAngelis type functional response and stage structure for prey incorporating refuge, Applied Mathematical Modelling, 40 (2016), 126-134.  doi: 10.1016/j.apm.2015.04.042.  Google Scholar

Figure 1.  Local stability of the equilibrium point $ E_1 $
Figure 2.  Local stability of the equilibrium point $ E^{*} $
Figure 3.  Global stability of interior equilibrium
Figure 4.  Bifurcation diagram of system $ (1) $ with respect to $ \eta $
Figure 5.  Bifurcation diagram of system $ (1) $ with respect to $ \beta $
Figure 6.  Bifurcation diagram of system $ (1) $ with respect to $ \beta_1 $
Figure 7.  Bifurcation diagram of system $ (1) $ with respect to $ \beta_2 $
Figure 8.  Bifurcation diagram of system $ (1) $ with respect to $ \gamma $
[1]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[2]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[3]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

[4]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[5]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[6]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[7]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[8]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[9]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[10]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[11]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[12]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[13]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[14]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[15]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[16]

Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040

[17]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[18]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[19]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[20]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]