doi: 10.3934/naco.2020035

Properties of higher order preinvex functions

Department of Mathematics, COMSATS University Islamabad, Pakistan

* Corresponding author: Muhammad Aslam Noor

Received  December 2019 Revised  July 2020 Published  August 2020

In this paper, we define and introduce some new concepts of the higher order strongly preinvex functions and higher order strongly monotone operators involving an arbitrary bifunction. Some new relationships among various concepts of higher order strongly preinvex functions have been established. We have shown that the optimality conditions for the preinvex functions can be characterized by class of higher order strongly variational-like inequalities, which appears to be new ones. As a novel applications of the higher order strongly preinvex functions, we have obtained the parallelogram-like laws for the uniformly Banach spaces. As special cases, one can obtain various new and known results from our results. Results obtained in this paper can be viewed as refinement and improvement of previously known results.

Citation: Muhammad Aslam Noor, Khalida Inayat Noor. Properties of higher order preinvex functions. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2020035
References:
[1]

O. AlabdaliA. Guessab and G. Schmeisser, Characterizations of uniform convexity for differentiable functions, Appl. Anal. Discrte Math., 13 (2019), 721-732.  doi: 10.2298/aadm190322029a.  Google Scholar

[2]

A. Ben-Isreal and B. Mond, What is invexity?, J. Austral. Math. Soc. Ser. B, 28 (1986), 1-9.  doi: 10.1017/S0334270000005142.  Google Scholar

[3]

W. L. Bynum, W., Weak parallelogram laws for Banach spaces, Can. Math. Bull., 19 (1976), 269-275.  doi: 10.4153/CMB-1976-042-4.  Google Scholar

[4]

R. Cheng and C. B. Harris, Duality of the weak parallelogram laws on Banach spaces, J. Math. Anal. Appl., 404 (2013), 64-70.  doi: 10.1016/j.jmaa.2013.02.064.  Google Scholar

[5]

R. Cheng and W. T. Ross, Weak parallelogram laws on Banach spaces and applications to prediction, Period. Math. Hung., 71 (2015), 45-58.  doi: 10.1007/s10998-014-0078-4.  Google Scholar

[6]

R. ChengJ. Mashreghi and W. T. Ross, Optimal weak parallelogram constants for $L_p $ space, Math. Inequal. Appl., 21 (2018), 1047-1058.  doi: 10.7153/mia-2018-21-71.  Google Scholar

[7]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550.  doi: 10.1016/0022-247X(81)90123-2.  Google Scholar

[8]

B. C. Joshi, S. K. Mishra and M. A. Noor, Semi-infinite mathematical programming problems with equilibrium constraints, Preprint, 2020. Google Scholar

[9]

T. Lara, N. Merentes and K. Nikodem, Strongly $h$-convexity and separation theorems, Int. J. Anal., 2016 (2016), Article ID 7160348, 5 pages. doi: 10.1155/2016/7160348.  Google Scholar

[10]

G. H. Lin and M. Fukushima, Some exact penalty results for nonlinear programs and mathematical programs with equilibrium constraints, J. Optim. Theory Appl., 118 (2003), 67-80.  doi: 10.1023/A:1024787424532.  Google Scholar

[11]

S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901-908.  doi: 10.1006/jmaa.1995.1057.  Google Scholar

[12]

B. B. Mohsen, M. A. Noor, K. I. Noor and M. Postolache, Strongly convex functions of higher order involving bifunction, Mathematics, Appl. Math. Inform. Sci., 7 (2019), 1028. doi: 10.18576/amis/140117.  Google Scholar

[13]

C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, Springer-Verlag, New York, 2018. doi: 10.1007/978-3-319-78337-6.  Google Scholar

[14]

K. Nikodem and Z. S. Pales, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal., 1 (2011), 83-87.  doi: 10.15352/bjma/1313362982.  Google Scholar

[15]

M. A. Noor, Variational-like inequalities, Optimization, 30 (1994), 323-330.  doi: 10.1080/02331939408843995.  Google Scholar

[16]

M. A. Noor, Invex equilibrium problems, J. Math. Anal. Appl., 302 (2005), 463-475.  doi: 10.1016/j.jmaa.2004.08.014.  Google Scholar

[17]

M. A. Noor and K. I. Noor, Higher order strongly generalized convex functions, Appl. Math. Inf. Sci., 14 (2020), 133-139.  doi: 10.18576/amis/140117.  Google Scholar

[18]

M. A. Noor and K. I. Noor, Some characterization of strongly preinvex functions, J. Math. Anal. Appl., 316 (2006), 697-706.  doi: 10.1016/j.jmaa.2005.05.014.  Google Scholar

[19]

M. A. Noor and K. I. Noor, Higher order strongly general convex functions and variational inequalities, AIMS Mathematics, 5 (2020), 3646-3663.  doi: 10.18576/amis/140117.  Google Scholar

[20]

B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl., 7 (1966), 2-75.   Google Scholar

[21]

G. Qu and N. Li, On the exponentially stability of primal-dual gradeint dynamics, IEEE Control Syst. Letters, 3 (2019), 43-48.   Google Scholar

[22]

H. K. Xu, Inequalities in Banach spaces with applications, Nonl. Anal.Theory, Meth. Appl., 16 (1991), 1127-1138.  doi: 10.1016/0362-546X(91)90200-K.  Google Scholar

[23]

X. M. YangQ. Yang and K. L. Teo, Criteria for generalized invex monotonicities, European J. Oper. Research, 164 (2005), 115-119.  doi: 10.1016/j.ejor.2003.11.017.  Google Scholar

[24]

T. Weir and B. Mond, Preinvex functions in multiobjective optimization, J. Math. Anal. Appl., 136 (1988), 29-38.  doi: 10.1016/0022-247X(88)90113-8.  Google Scholar

[25]

D. L. Zu and P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM Journal on Optimization, 6 (1996), 714-726.  doi: 10.1137/S1052623494250415.  Google Scholar

show all references

References:
[1]

O. AlabdaliA. Guessab and G. Schmeisser, Characterizations of uniform convexity for differentiable functions, Appl. Anal. Discrte Math., 13 (2019), 721-732.  doi: 10.2298/aadm190322029a.  Google Scholar

[2]

A. Ben-Isreal and B. Mond, What is invexity?, J. Austral. Math. Soc. Ser. B, 28 (1986), 1-9.  doi: 10.1017/S0334270000005142.  Google Scholar

[3]

W. L. Bynum, W., Weak parallelogram laws for Banach spaces, Can. Math. Bull., 19 (1976), 269-275.  doi: 10.4153/CMB-1976-042-4.  Google Scholar

[4]

R. Cheng and C. B. Harris, Duality of the weak parallelogram laws on Banach spaces, J. Math. Anal. Appl., 404 (2013), 64-70.  doi: 10.1016/j.jmaa.2013.02.064.  Google Scholar

[5]

R. Cheng and W. T. Ross, Weak parallelogram laws on Banach spaces and applications to prediction, Period. Math. Hung., 71 (2015), 45-58.  doi: 10.1007/s10998-014-0078-4.  Google Scholar

[6]

R. ChengJ. Mashreghi and W. T. Ross, Optimal weak parallelogram constants for $L_p $ space, Math. Inequal. Appl., 21 (2018), 1047-1058.  doi: 10.7153/mia-2018-21-71.  Google Scholar

[7]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550.  doi: 10.1016/0022-247X(81)90123-2.  Google Scholar

[8]

B. C. Joshi, S. K. Mishra and M. A. Noor, Semi-infinite mathematical programming problems with equilibrium constraints, Preprint, 2020. Google Scholar

[9]

T. Lara, N. Merentes and K. Nikodem, Strongly $h$-convexity and separation theorems, Int. J. Anal., 2016 (2016), Article ID 7160348, 5 pages. doi: 10.1155/2016/7160348.  Google Scholar

[10]

G. H. Lin and M. Fukushima, Some exact penalty results for nonlinear programs and mathematical programs with equilibrium constraints, J. Optim. Theory Appl., 118 (2003), 67-80.  doi: 10.1023/A:1024787424532.  Google Scholar

[11]

S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901-908.  doi: 10.1006/jmaa.1995.1057.  Google Scholar

[12]

B. B. Mohsen, M. A. Noor, K. I. Noor and M. Postolache, Strongly convex functions of higher order involving bifunction, Mathematics, Appl. Math. Inform. Sci., 7 (2019), 1028. doi: 10.18576/amis/140117.  Google Scholar

[13]

C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, Springer-Verlag, New York, 2018. doi: 10.1007/978-3-319-78337-6.  Google Scholar

[14]

K. Nikodem and Z. S. Pales, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal., 1 (2011), 83-87.  doi: 10.15352/bjma/1313362982.  Google Scholar

[15]

M. A. Noor, Variational-like inequalities, Optimization, 30 (1994), 323-330.  doi: 10.1080/02331939408843995.  Google Scholar

[16]

M. A. Noor, Invex equilibrium problems, J. Math. Anal. Appl., 302 (2005), 463-475.  doi: 10.1016/j.jmaa.2004.08.014.  Google Scholar

[17]

M. A. Noor and K. I. Noor, Higher order strongly generalized convex functions, Appl. Math. Inf. Sci., 14 (2020), 133-139.  doi: 10.18576/amis/140117.  Google Scholar

[18]

M. A. Noor and K. I. Noor, Some characterization of strongly preinvex functions, J. Math. Anal. Appl., 316 (2006), 697-706.  doi: 10.1016/j.jmaa.2005.05.014.  Google Scholar

[19]

M. A. Noor and K. I. Noor, Higher order strongly general convex functions and variational inequalities, AIMS Mathematics, 5 (2020), 3646-3663.  doi: 10.18576/amis/140117.  Google Scholar

[20]

B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl., 7 (1966), 2-75.   Google Scholar

[21]

G. Qu and N. Li, On the exponentially stability of primal-dual gradeint dynamics, IEEE Control Syst. Letters, 3 (2019), 43-48.   Google Scholar

[22]

H. K. Xu, Inequalities in Banach spaces with applications, Nonl. Anal.Theory, Meth. Appl., 16 (1991), 1127-1138.  doi: 10.1016/0362-546X(91)90200-K.  Google Scholar

[23]

X. M. YangQ. Yang and K. L. Teo, Criteria for generalized invex monotonicities, European J. Oper. Research, 164 (2005), 115-119.  doi: 10.1016/j.ejor.2003.11.017.  Google Scholar

[24]

T. Weir and B. Mond, Preinvex functions in multiobjective optimization, J. Math. Anal. Appl., 136 (1988), 29-38.  doi: 10.1016/0022-247X(88)90113-8.  Google Scholar

[25]

D. L. Zu and P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM Journal on Optimization, 6 (1996), 714-726.  doi: 10.1137/S1052623494250415.  Google Scholar

[1]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[2]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[3]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[4]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[7]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[8]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[9]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[10]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

 Impact Factor: 

Article outline

[Back to Top]