September  2021, 11(3): 443-448. doi: 10.3934/naco.2020036

Application of survival theory in Mining industry

1. 

Institute of Mathematics and Digital Technology, Mongolian Academy of Sciences, National University of Mongolia

2. 

National University of Mongolia

3. 

Erdenet Mining Corporation, Erdenet, Mongolia

*Corresponding author: Enkhbat Rentsen

Received  April 2020 Revised  June 2020 Published  September 2021 Early access  August 2020

Fund Project: This work was supported by the project of Business School of National University of Mongolia

The paper deals with an application of survival theory in mineral processing industry. We consider the problem of maximizing copper recovery and determine the best operating conditions based on survival theory. The survival of the system reduces to a problem of maximizing a radius of a sphere inscribed into a polyhedral set defined by the linear regression equations for a flotation process. To demonstrate the effectiveness of the proposed approach, we present a case study for the rougher flotation process of copper-molybdenum ores performed at the Erdenet Mining Corporation(Mongolia).

Citation: Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036
References:
[1]

L. T. Ashepkov and U. Badam, Models and Methods of Survival Theory for Controlled System, Vladivostok: DalNauka, 2006.

[2]

U. Badam, A simple model of improving survival in economical systems, Optimization of Control (Eds. P. M. Pardalos, I. Tseveendorj and R. Enkhbat), World Scientific, (2003), 287–295.

[3]

U. Badam, Optimality conditions for problems of survival theory, Izvestiya Vuzov, 2 (2002), 18-22. 

[4]

U. Badam, Models and problems of survival theory for linear discrete system, Intellect and Control, (2002), 35–50.

[5]

U. Badam, R. Enkhbat and Ts. Batchimeg, Application of survival theory in taxation, Journal of Indusdrial and Management Optimization, accepted and to appear in 2021.

[6]

D. Carl FreemanLionel G. Klikoff and He nry Eyringt, Applications of the survival theory to ecology, Proc. Nat. Acad. Sci. USA, 11 (1974), 4332-4335. 

[7]

S. S. Cham. RathH. Sahoo and B. Das, Optimization of flotation variables for the recovery of hematite particles from BHQ Ore, Int. J. Miner. Metall. Mater., 20 (2013), 605-611. 

[8]

R. Enkhbat, Global optimization approach to Malfatti's problem, Journal of Global Optimization, 65 (2016), 3-39.  doi: 10.1007/s10898-015-0372-6.

[9]

R. Enkhbat, Convex maximization formulation of general sphere packing problem, Izv. Irkutsk. Gos. Univ. Ser. Mat., 31 (2020), 142-149. 

[10]

R. EnkhbatT. V. Gruzdeva and M. V. Barkova, D. C. programming approach for solving an applied ore-processing problem, Journal of Indusdrial and Management Optimization, 14 (2018), 613-623.  doi: 10.3934/jimo.2017063.

[11]

Thomas R. Fleming and David P. Harrington, Counting Processes and Survival Analysis, Wiley, 1991.

[12]

T. V. GruzdevaA. V. Ushakov and R. Enkhbat, A bioobjective d.c programming approach to optimization of rougher flotation process, Computers and Chemical Engineering, 108 (2018), 349-359. 

[13]

C. Huber, N. Limnios, M. Meshbah and M. Nikulin, Mathematical Methods in Survival Analysis, Reliability and Quality of Life, Wiley, 2008. doi: 10.1002/9780470610985.

[14]

X. Liu, Survival Analysis(Models and Applications), Wiley, 2012.

[15]

M. MaldonadoD. Sbarbaro and E. Lizama, Optimal control of a rougher flotation process based on dynamic programming, Miner. Eng., 20 (2007), 221-232. 

[16]

D. A. MendezE. D. Gálvez and L. A. Cisternas, State of the art in the conceptual design of flotation circuits, Int. J. Miner. Process., 90 (2009), 1-15. 

[17]

D. PirouzanM. Yahyaei and S. Banisi, Pareto based optimization of flotation cells configuration using an oriented genetic algorithm, Int. J. Miner. Process., 126 (2014), 107-116. 

[18]

B. J. Shean and J. J. Cilliers, A review of froth flotation control, Int. J. Miner. Process., 100 (2011), 57-71. 

[19]

A. S. Strekalovsky, Global optimality conditions and exact penalization, Optimization Letters, 13 (2019), 597-615.  doi: 10.1007/s11590-017-1214-x.

[20]

G. Zimmermann, From Basic Survival Analytic Theory to a Non-Standard Application, Springer, 2017.

show all references

References:
[1]

L. T. Ashepkov and U. Badam, Models and Methods of Survival Theory for Controlled System, Vladivostok: DalNauka, 2006.

[2]

U. Badam, A simple model of improving survival in economical systems, Optimization of Control (Eds. P. M. Pardalos, I. Tseveendorj and R. Enkhbat), World Scientific, (2003), 287–295.

[3]

U. Badam, Optimality conditions for problems of survival theory, Izvestiya Vuzov, 2 (2002), 18-22. 

[4]

U. Badam, Models and problems of survival theory for linear discrete system, Intellect and Control, (2002), 35–50.

[5]

U. Badam, R. Enkhbat and Ts. Batchimeg, Application of survival theory in taxation, Journal of Indusdrial and Management Optimization, accepted and to appear in 2021.

[6]

D. Carl FreemanLionel G. Klikoff and He nry Eyringt, Applications of the survival theory to ecology, Proc. Nat. Acad. Sci. USA, 11 (1974), 4332-4335. 

[7]

S. S. Cham. RathH. Sahoo and B. Das, Optimization of flotation variables for the recovery of hematite particles from BHQ Ore, Int. J. Miner. Metall. Mater., 20 (2013), 605-611. 

[8]

R. Enkhbat, Global optimization approach to Malfatti's problem, Journal of Global Optimization, 65 (2016), 3-39.  doi: 10.1007/s10898-015-0372-6.

[9]

R. Enkhbat, Convex maximization formulation of general sphere packing problem, Izv. Irkutsk. Gos. Univ. Ser. Mat., 31 (2020), 142-149. 

[10]

R. EnkhbatT. V. Gruzdeva and M. V. Barkova, D. C. programming approach for solving an applied ore-processing problem, Journal of Indusdrial and Management Optimization, 14 (2018), 613-623.  doi: 10.3934/jimo.2017063.

[11]

Thomas R. Fleming and David P. Harrington, Counting Processes and Survival Analysis, Wiley, 1991.

[12]

T. V. GruzdevaA. V. Ushakov and R. Enkhbat, A bioobjective d.c programming approach to optimization of rougher flotation process, Computers and Chemical Engineering, 108 (2018), 349-359. 

[13]

C. Huber, N. Limnios, M. Meshbah and M. Nikulin, Mathematical Methods in Survival Analysis, Reliability and Quality of Life, Wiley, 2008. doi: 10.1002/9780470610985.

[14]

X. Liu, Survival Analysis(Models and Applications), Wiley, 2012.

[15]

M. MaldonadoD. Sbarbaro and E. Lizama, Optimal control of a rougher flotation process based on dynamic programming, Miner. Eng., 20 (2007), 221-232. 

[16]

D. A. MendezE. D. Gálvez and L. A. Cisternas, State of the art in the conceptual design of flotation circuits, Int. J. Miner. Process., 90 (2009), 1-15. 

[17]

D. PirouzanM. Yahyaei and S. Banisi, Pareto based optimization of flotation cells configuration using an oriented genetic algorithm, Int. J. Miner. Process., 126 (2014), 107-116. 

[18]

B. J. Shean and J. J. Cilliers, A review of froth flotation control, Int. J. Miner. Process., 100 (2011), 57-71. 

[19]

A. S. Strekalovsky, Global optimality conditions and exact penalization, Optimization Letters, 13 (2019), 597-615.  doi: 10.1007/s11590-017-1214-x.

[20]

G. Zimmermann, From Basic Survival Analytic Theory to a Non-Standard Application, Springer, 2017.

[1]

Badam Ulemj, Enkhbat Rentsen, Batchimeg Tsendpurev. Application of survival theory in taxation. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2573-2578. doi: 10.3934/jimo.2020083

[2]

Feyza Gürbüz, Panos M. Pardalos. A decision making process application for the slurry production in ceramics via fuzzy cluster and data mining. Journal of Industrial and Management Optimization, 2012, 8 (2) : 285-297. doi: 10.3934/jimo.2012.8.285

[3]

Gabriela Kováčová, Birgit Rudloff, Igor Cialenco. Acceptability maximization. Frontiers of Mathematical Finance, 2022, 1 (2) : 219-248. doi: 10.3934/fmf.2021009

[4]

Zhongming Chen, Liqun Qi. Circulant tensors with applications to spectral hypergraph theory and stochastic process. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1227-1247. doi: 10.3934/jimo.2016.12.1227

[5]

Pierre Lissy. Construction of gevrey functions with compact support using the bray-mandelbrojt iterative process and applications to the moment method in control theory. Mathematical Control and Related Fields, 2017, 7 (1) : 21-40. doi: 10.3934/mcrf.2017002

[6]

Raimund Bürger, Stefan Diehl, María Carmen Martí. A conservation law with multiply discontinuous flux modelling a flotation column. Networks and Heterogeneous Media, 2018, 13 (2) : 339-371. doi: 10.3934/nhm.2018015

[7]

Jingzhen Liu, Yike Wang, Ming Zhou. Utility maximization with habit formation of interaction. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1451-1469. doi: 10.3934/jimo.2020029

[8]

Rodrigo I. Brevis, Jaime H. Ortega, David Pardo. A source time reversal method for seismicity induced by mining. Inverse Problems and Imaging, 2017, 11 (1) : 25-45. doi: 10.3934/ipi.2017002

[9]

Azmy S. Ackleh, Ben G. Fitzpatrick, Horst R. Thieme. Rate distributions and survival of the fittest: a formulation on the space of measures. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 917-928. doi: 10.3934/dcdsb.2005.5.917

[10]

Dongxi Li, Ni Zhang, Ming Yan, Yanya Xing. Survival analysis for tumor growth model with stochastic perturbation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5707-5722. doi: 10.3934/dcdsb.2021041

[11]

Xuepeng Zhang, Zhibin Liang. Optimal layer reinsurance on the maximization of the adjustment coefficient. Numerical Algebra, Control and Optimization, 2016, 6 (1) : 21-34. doi: 10.3934/naco.2016.6.21

[12]

Nicholas Westray, Harry Zheng. Constrained nonsmooth utility maximization on the positive real line. Mathematical Control and Related Fields, 2015, 5 (3) : 679-695. doi: 10.3934/mcrf.2015.5.679

[13]

Qinglei Zhang, Wenying Feng. Detecting coalition attacks in online advertising: A hybrid data mining approach. Big Data & Information Analytics, 2016, 1 (2&3) : 227-245. doi: 10.3934/bdia.2016006

[14]

Zhen Mei. Manifold data mining helps businesses grow more effectively. Big Data & Information Analytics, 2016, 1 (2&3) : 275-276. doi: 10.3934/bdia.2016009

[15]

Sunmoo Yoon, Maria Patrao, Debbie Schauer, Jose Gutierrez. Prediction models for burden of caregivers applying data mining techniques. Big Data & Information Analytics, 2017  doi: 10.3934/bdia.2017014

[16]

Anupama N, Sudarson Jena. A novel approach using incremental under sampling for data stream mining. Big Data & Information Analytics, 2018  doi: 10.3934/bdia.2017017

[17]

Saide Zhu, Wei Li, Hong Li, Chunqiang Hu, Zhipeng Cai. A survey: Reward distribution mechanisms and withholding attacks in Bitcoin pool mining. Mathematical Foundations of Computing, 2018, 1 (4) : 393-414. doi: 10.3934/mfc.2018020

[18]

Rachel Kuske, Peter Borowski. Survival of subthreshold oscillations: The interplay of noise, bifurcation structure, and return mechanism. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 873-895. doi: 10.3934/dcdss.2009.2.873

[19]

Cristina Anton, Alan Yong. Stochastic dynamics and survival analysis of a cell population model with random perturbations. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1077-1098. doi: 10.3934/mbe.2018048

[20]

Jungsoo Kang. Survival of infinitely many critical points for the Rabinowitz action functional. Journal of Modern Dynamics, 2010, 4 (4) : 733-739. doi: 10.3934/jmd.2010.4.733

 Impact Factor: 

Metrics

  • PDF downloads (274)
  • HTML views (565)
  • Cited by (0)

[Back to Top]