[1]
|
J. Y. Bello Cruz, O. P. Ferreira and L. F. Prudente, On the global convergence of the inexact semi-smooth Newton method for absolute value equation, Computational Optimization and Applications, 65 (2016), 93-108.
doi: 10.1007/s10589-016-9837-x.
|
[2]
|
X. Chen, Smoothing methods for nonsmooth, nonconvex minimization, Mathematical Programming, 134 (2012), 71–99.
doi: 10.1007/s10107-012-0569-0.
|
[3]
|
H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, Clarendon Press, Oxford, 2000.
|
[4]
|
V. Edalatpour, D. Hezari and D. K. Salkuyeh, A generalization of the Gauss Seidel iteration method for solving absolute value equations, Applied Mathematics and Computation, 293 (2017), 156-167.
doi: 10.1016/j.amc.2016.08.020.
|
[5]
|
J. Gotoh, A. Takeda and K. Tono, DC formulations and algorithms for sparse optimization problems, Mathematical Programming, 169 (2018), 141-176.
doi: 10.1007/s10107-017-1181-0.
|
[6]
|
F. Hashemi and S. Ketabchi, Numerical comparisons of smoothing functions for optimal correction of an infeasible system of absolute value equations, Numerical Algebra, Control and Optimization, 10 (2020), 13-21.
|
[7]
|
S. Ketabch and H. Moosaei, An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side, Computers and Mathematics with Applications, 64 (2012), 1882-1885.
doi: 10.1016/j.camwa.2012.03.015.
|
[8]
|
S. Ketabchi and H. Moosaei, Minimum norm solution to the absolute value equation in the convex case, Journal of Optimization Theory and Applications, 154 (2012), 1080-1087.
doi: 10.1007/s10957-012-0044-3.
|
[9]
|
C.-X. Li, A modified generalized newton method for absolute value equations, Journal of Optimization Theory and Applications, 170 (2016), 1055-1059.
doi: 10.1007/s10957-016-0956-4.
|
[10]
|
P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM Journal on Numerical Analysis, 16 (1979), 964-979.
doi: 10.1137/0716071.
|
[11]
|
O. L. Mangasarian, A generalized Newton method for absolute value equations, Optimization Letters, 3 (2009), 101-108.
doi: 10.1007/s11590-008-0094-5.
|
[12]
|
O. L. Mangasarian, Absolute value equation solution via concave minimization, Optimization Letters, 1 (2007), 3-8.
doi: 10.1007/s11590-006-0005-6.
|
[13]
|
O. L. Mangasarian, Primal-dual bilinear programming solution of the absolute value equation, Optimization Letters, 6 (2012), 1527-1533.
doi: 10.1007/s11590-011-0347-6.
|
[14]
|
R. D. Millan and M. P. Machado, Inexact proximal $\epsilon$-subgradient methods for composite convex optimization problems, Journal of Global Optimization, 75 (2019), 1029-1060.
doi: 10.1007/s10898-019-00808-8.
|
[15]
|
H. Moosaei, S. Ketabchi, M. A. Noor, J. Iqbal and V. Hooshyarbakhsh, Some techniques for solving absolute value equations, Applied Mathematics and Computation, 268 (2015), 696-705.
doi: 10.1016/j.amc.2015.06.072.
|
[16]
|
G. Ning and Y. Zhou, An improved differential evolution algorithm for solving absolute value equations, High Performance Computing and Applications, (2016), 38–47.
doi: 10.1007/978-3-319-32557-6_4.
|
[17]
|
G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, Journal of Mathematical Analysis and Applications, 72 (1979), 383-390.
doi: 10.1016/0022-247X(79)90234-8.
|
[18]
|
D. T. Pham and H. A. Le Thi, Convex analysis approach to D.C. programming: theory, algorithms and applications, Acta Mathematica Vietnamica, 22 (1997), 289-355.
|
[19]
|
T. J. Ransford, A short proof of Johnson's uniqueness-of-norm theorem, Bulletin of the London Mathematical Society, 21 (1989), 487-488.
doi: 10.1112/blms/21.5.487.
|
[20]
|
B. Saheya, C. H. Yu and J. S. Chen, Numerical comparisons based on four smoothing functions for absolute value equation, Journal of Applied Mathematics and Computing, 56 (2018), 131-149.
doi: 10.1007/s12190-016-1065-0.
|
[21]
|
J. S. Sartakhti, H. Afrabandpey and M. Saraee, Simulated annealing least squares twin support vector machine (SA-LSTSVM) for pattern classification, Soft Computing, 21 (2017), 4361-4373.
|
[22]
|
D. K. Salkuyeh, The Picard-HSS iteration method for absolute value equations, Optimization Letters, 8 (2014), 2191-2202.
doi: 10.1007/s11590-014-0727-9.
|
[23]
|
B. Wen, X. Chen and T. K. Pong, A proximal difference-of-convex algorithm with extrapolation, Computational Optimization and Applications, 69 (2018), 297-324.
doi: 10.1007/s10589-017-9954-1.
|
[24]
|
C. Zhang and Q. J. Wei, Global and finite convergence of a generalized newton method for absolute value equations, Journal of Optimization Theory and Applications, 143 (2009), 391-403.
doi: 10.1007/s10957-009-9557-9.
|